quinta-feira, 30 de junho de 2011

O maior campo magnético é criado

Foi batido um novo recorde mundial para os campos magnéticos por físicos alemães, ao alcançar a marca dos 91,4 T (teslas).
bobina dupla
© Helmholtz-Zentrum (bobina dupla)
Para alcançar este recorde, Sergei Zherlitsyn e seus colegas do Centro Helmholtz desenvolveram uma bobina pesando aproximadamente 200 quilogramas.
Ao percorrer a bobina, uma fortíssima corrente elétrica cria o campo magnético, por um período de alguns milissegundos, sob risco de explodir a própria bobina.
O campo magnético influencia a própria corrente elétrica que o gera, tentando empurrar a corrente elétrica para fora da bobina. Quanto mais forte a corrente flui, mais fortes são essas forças.
"A 25 tesla, o cobre seria dilacerado," explica Joachim Wosnitza, que construiu a bobina. Para comparação, um ímã de geladeira comum tem 0,05 tesla.
"Apesar do recorde, não estamos realmente muito interessados em alcançar valores de campo cada vez mais altos, mas sim em usá-los para a pesquisa em ciência dos materiais", explica o pesquisador.
Quanto mais poderosos forem os campos magnéticos, mais precisamente os cientistas poderão estudar novos materiais para a construção de componentes eletrônicos inovadores, ou os chamados supercondutores, que conduzem eletricidade sem qualquer resistência.
Técnicas assim permitiram que a mesma equipe fizesse com que o semicondutor germânio se tornasse supercondutor a temperatura ambiente.
Os teóricos estimam que o estudo e a manipulação precisa desses novos materiais exigirão campos magnéticos entre 90 e 100 teslas.
A 100 teslas, porém, a força de Lorentz no interior do cobre poderia gerar uma pressão que equivale a 40.000 vezes a pressão do ar ao nível do mar.
banco de capacitores
© Helmholtz-Zentrum (banco de capacitores)
Uma força assim destruiria o cobre de forma instantânea, em uma explosão.
Por isso, para construir suas bobinas, os pesquisadores usam ligas de cobre especiais, capazes de suportar 10 mil vezes a pressão atmosférica.
Ainda muito pouco, sendo apenas um quarto do necessário para alcançar os 100 teslas.
A primeira saída encontrada foi unir os fios de cobre da bobina com fibras sintéticas de carbono, usadas em coletes à prova de balas, que pressionam o cobre de fora para dentro.
Isso permite construir uma bobina que alcança por volta de 50 teslas.
Para obter os 91,4 teslas do maior campo magnético já gerado, os pesquisadores construíram duas bobinas, colocando uma dentro da outra.
Ainda assim, o aparato só funciona durante alguns milissegundos, consumindo a energia fornecida por um gigantesco banco de capacitores.
Fonte: Helmholtz-Zentrum

sábado, 25 de junho de 2011

Transformação do neutrino

Cientistas acreditam estar um passo mais perto de entender por que a matéria e não a antimatéria domina o Universo - quantidades iguais de ambos teriam sido desencadeadas pelo Big Bang.
Super-Kamiokande
© Observatório Kamioka (Super-Kamiokande)
Uma equipe internacional de pesquisadores no Japão descobriu que os três tipos de neutrino, uma das partículas básicas da natureza, podem se transformar um no outro, o que poderia ser sua vantagem para o antineutrino.
O experimento foi realizado pelo Super-Kamiokande, um detector de neutrinos localizado 1 km debaixo da terra, em uma mina na cidade de Hida, no Japão. A estrutura cilíndrica tem 42 m de altura e 39,3 m de largura e é formada por 50 mil t de água pura rodeada por mais de 13 mil tubos fotomultiplicadores. O neutrino, ao colidir com os núcleos dos átomos de água emite radiação, e esta é captada pelos fotomultiplicadores(as bolas espalhadas na água na foto acima).
Em 1998 e 2001, os cientistas já haviam descoberto mudanças nas oscilações de neutrinos atmosféricos e aqueles emitidos pelo Sol. Os neutrinos têm três tipos, ou três "sabores". Já sabe-se que esses podem se transformar de duas formas, e o Super-Kamiokande descobriu mais uma forma.
Na natureza, as partículas fundamentais são divididas em três tipos. Existem por exemplo os léptons elétron, múon e tau - esta mesma divisão é utilizada para os neutrinos. As duas formas de transformação anteriormente observadas eram neutrinos de tau se transformarem em neutrinos de múon e vice-versa. Agora, o Super-Kamiokande trouxe à tona mais uma: neutrinos de múon se transformaram em neutrinos de elétrons, o que indica que todas as transformações são possíveis para essa partícula.
Essa capacidade de transformação de um tipo em outro que pode ser a diferença crucial entre o neutrino e o antineutrino e a predominância do primeiro no Universo.
Fonte: Universidade de Tóquio

sexta-feira, 10 de junho de 2011

Primeiro circuito integrado de grafeno

Cientistas da IBM apresentaram o primeiro circuito integrado feito com componentes de grafeno.
transístor de grafeno e um par de bobinas
© Science (transístor de grafeno e um par de bobinas)
Embora muito simples, a demonstração é um passo importante na transição do grafeno da categoria de material promissor para material útil.
Em 2009, um grupo do MIT havia construído um chip de grafeno, bastante rudimentar, mas mostrando que seria possível utilizar as folhas de carbono com apenas um átomo de espessura em conjunto com componentes da eletrônica tradicional.
Em 2010, um outro grupo da própria IBM construiu um transístor de grafeno que bateu o recorde mundial de velocidade, operando a 300 GHz.
Agora, Phaedon Avouris e seus colegas construíram um circuito integrado de verdade, usando equipamentos industriais e componentes de grafeno.
O circuito consiste de um único transístor de grafeno com um par de indutores integrados em uma pastilha de carbeto de silício (SiC).
O maior avanço desse pequeno circuito está no desenvolvimento de uma técnica para fixar o grafeno no silício, já que vinha sendo difícil convencê-lo a aderir nos metais ou nos óxidos usados pela indústria eletrônica.
Avouris e seus colegas tiveram uma ideia genial: em vez de fabricar o grafeno e depois fixá-lo sobre o silício, eles pegaram o carbeto de silício, que é formado de silício e carbono, e retiraram o silício da camada superficial, deixando apenas os átomos de carbono, que formaram o grafeno.
A litografia fez o resto, desenhando o transístor no grafeno que já nasceu fixado no silício.
Os indutores (bobinas) foram construídos de alumínio diretamente sobre a pastilha. Uma camada de 120 nanômetros de dióxido de silício, depositado por evaporação, isola as voltas das bobinas do restante do circuito.
circuito funciona como um misturador de frequências
© Science (circuito funciona como um misturador de frequências)
O circuito funciona como um misturador de frequências, operando a 10 GHz. Misturadores de frequência são utilizados em sistema de comunicação por rádio como, por exemplo, nas redes de comunicações sem fios.
O próximo passo da pesquisa será otimizar o transístor, para que ele opere em velocidades mais altas, e projetar circuitos mais complexos.
É grande a expectativa na indústria para a construção de circuitos híbridos, incluindo componentes feitos com os semicondutores tradicionais e componentes feitos com grafeno.
Fonte: Science

Grafeno na spintrônica

Filme de carbono com apenas um átomo de espessura e dotado de uma estrutura hexagonal, o grafeno é uma das esperanças para o desenvolvimento de uma nova eletrônica, a spintrônica, que poderá levar ao surgimento de computadores quânticos, ainda menores e mais rápidos.
folhas de grafeno
© Universidade de Manchester (folhas de grafeno)
Nesse novo mundo, a informação magnética não seria transmitida apenas pela corrente elétrica, como ocorre nos micros atuais, mas fundamentalmente por outra propriedade dos elétrons, por seu spin. Como só existem dois valores possíveis para o spin, esse estado do elétron pode ser útil para armazenar e propagar dados na forma de bits. Mas o sinal gerado pela corrente de spin é extremamente fraco e tende a se propagar em todas as direções, duas características que dificultam seu controle e detecção. De acordo com um trabalho recente de físicos teóricos brasileiros, esses empecilhos são aparentemente contornáveis no grafeno, um candidato a tomar o lugar do silício nos circuitos integrados do futuro: o spin de seus elétrons pode ser amplificado e controlado por meio de um mecanismo que funciona como uma lente, criando a possibilidade de o material ser usado como um nanotransistor quântico.
“Provamos matematicamente que o grafeno pode atuar como uma lente e redirecionar a corrente de spin de uma fonte magnética para uma determinada região onde se encontra uma unidade receptora”, diz o físico brasileiro Mauro Ferreira, do Trinity College, de Dublin, que participou do estudo, publicado na edição de maio do Journal of Physics: Condensed Matter, ao lado de colegas da Universidade Federal Fluminense (UFF). “Dessa forma, uma parte da informação que seria perdida pode ser resgatada.” Nada disso ainda foi feito em laboratório, apenas esboçado em trabalhos teóricos. Depois de uma série de cálculos, os pesquisadores afirmam que o grafeno, um material mais resistente do que o aço e melhor condutor de eletricidade do que o cobre, pode se comportar como um transistor de spin se exposto a certas condições. O artigo é o terceiro do grupo de físicos a explorar teoricamente as possibilidades do uso de nanotubos de carbono e do grafeno na spintrônica. Os dois estudos anteriores saíram no ano passado na Physical Review B.
Para transformar o spin do grafeno num meio capaz de transmitir informação num sistema quântico, os brasileiros trabalharam com um cenário bastante particular. A criação de uma corrente de spin foi simulada por meio da inserção de um objeto magnético na arquitetura atômica em forma de colmeia do grafeno, composta apenas por carbonos. “Imagine um pequeno ímã em movimento rotatório numa folha de grafeno”, compara Ferreira. A presença desse objeto estranho faria o spin dos elétrons de carbono vibrarem sucessivamente da mesma maneira. A vibração do spin de um elétron seria então repassada a seu vizinho e assim por diante. O problema é que uma corrente de spin se dissemina, sem controle, por todas as direções do grafeno. “A exemplo das ondas criadas por uma pedra jogada num lago, essa corrente é mais fraca à medida que se distancia de sua origem”, diz o pesquisador
O passo seguinte da simulação foi dividir o filme de grafeno em duas partes e alterar a densidade de carga elétrica numa delas. O procedimento geraria nesse segmento do grafeno um potencial de porta, um caminho para o qual a corrente de spin se dirigiria e por meio do qual se disseminaria pelo material. “A corrente de spin não dissipa calor no grafeno e a perda de energia num sistema assim seria mínima. Um dipositivo que funcionasse por meio dessa corrente consumiria pouquíssima energia”, afirma o físico Roberto Bechara Muniz, da UFF, outro autor do trabalho. Além de canalizar a corrente de spin para uma região específica do grafeno e, assim, amplificar seu sinal, a criação da porta funcionaria como uma chave para ligar e desligar o transistor. Permitiria barrar ou liberar a passagem da corrente de spin. “Nosso trabalho dá apenas uma pequena contribuição sobre essa questão, mas mostra ser possível controlar a corrente de spin no grafeno”, diz Muniz. Especialista em spintrônica, José Carlos Egues, do Instituto de Física de São Carlos, da Universidade de São Paulo, que não participou dos trabalhos de Ferreira e Muniz, considera os resultados interessantes, mas ainda muito preliminares. “Mais estudos são necessários para explorar a viabilidade da proposta e a sua relevância para aplicações em spintrônica”, comenta Egues.
Por didatismo, o spin é descrito como o movimento feito por um elétron ao girar em torno do próprio eixo como um pião. Há duas formas de spin, uma com rotação para cima e outra para baixo. Na verdade, o fenômeno é mais complicado do que isso e um elétron pode apresentar simultaneamente as duas variantes de spin. Em termos práticos, o desenvolvimento de uma nova eletrônica depende do pleno domínio da corrente de spin, como se tem atualmente da corrente elétrica, e de ter meios eficazes de controlar a conversão de um tipo de spin para outro. Físicos de todo o mundo têm tentado criar correntes de spin em materiais semicondutores e também no grafeno, um cristal bidimensional com um conjunto de propriedades singulares.
Num artigo publicado na revista científica americana Science de 15 de abril deste ano, Andre Geim e Konstantin Novoselov, físicos da Universidade de Manchester que ganharam o Nobel de Física de 2010 por seus trabalhos com o grafeno, mostraram indícios de que esse material pode mesmo transmitir uma corrente de spin. Eles aplicaram um campo elétrico entre dois eletrodos situados um milionésimo de metro de uma folha desse material e mediram a voltagem numa região distante 10 milionésimos de metro dos eletrodos. Quando o grafeno foi exposto a um campo magnético, a voltagem se tornou mais elevada. Essa variação, segundo os autores do estudo, é uma evidência de que há uma corrente de spin passando pelo grafeno.
Fonte: FAPESP (Pesquisa)

quinta-feira, 9 de junho de 2011

Ímã líquido gera magnetismo pelo movimento

A Terra, o Sol e outros corpos celestes geram campos magnéticos através do movimento dos seus fluidos internos condutores de eletricidade.
geodínamo
© Los Alamos National Laboratory (geodínamo)
Estes fluidos são frequentemente muitíssimo turbulentos.
Mas pode ser possível gerar magnetismo em um fluido que flui com suavidade, por exemplo, em um tanque de sódio líquido posto para girar suavemente.
Uma equipe de físicos anunciou ter alcançado uma amplificação de oito vezes de um campo magnético promissor. Na próxima fase de seu projeto, eles esperam demonstrar um campo magnético auto-sustentável, como ocorre na Terra, assim como em todos os planetas e estrelas.
Na última década, pesquisadores conseguiram criar campos magnéticos em laboratório usando os chamados dínamos fluidos. Assim como seus equivalentes astronômicos, esses sistemas são baseados na rotação de um fluido, tipicamente o sódio, devido à sua alta condutividade.
Um pequeno campo magnético inicial, aplicado ao tanque com o sódio em rotação, pode gerar uma corrente elétrica.
Esta, por sua vez, gera mais campo magnético, criando um círculo virtuoso que pode levar a um crescimento exponencial do campo.
Em vez de discutir as complexas interações corrente-campo magnético, os pesquisadores frequentemente descrevem essa amplificação como um processo de alongamento e dobramento das linhas do campo magnético, que são essencialmente arrastadas pelo fluido.
Mas não tem havido consenso nessas explicações. Alguns pesquisadores argumentam que o reforço do campo magnético é gerado pela turbulência, que cria vórtices capazes de realimentar o processo.
Outros, porém, argumentam que a turbulência é aleatória - dessa forma, alguns turbilhões atuarão no sentido da amplificação, enquanto outros terão o efeito oposto, tornando o campo magnético mais difuso e mais fraco.
Stirling Colgate e seus colegas do Laboratório Nacional Los Álamos, nos Estados Unidos, decidiram então partir para trabalhar com dínamos fluidos sem turbulência, nos quais o sódio é girado suavemente, de maneira contínua e previsível.
Isso permitirá descrever com bastante precisão o papel da turbulência nesses processos essenciais ao "funcionamento do cosmos".
O fluido está dentro de um tanque em forma de anel, de 30 centímetros de altura, cujo raio interno é metade do raio externo.
Em vez de usar hélices, o fluido é rotacionado girando as paredes do tanque. A parede interna gira a 68 rotações por segundo, enquanto a parede externa gira um quarto mais rápido.
Esse fluxo suave reproduz o que se acredita acontecer no interior das estrelas jovens e ao redor dos buracos negros.
No último experimento, a equipe aplicou um campo magnético de cerca de 12 G (gauss), apontando radialmente para dentro.
Como era de se esperar de um líquido condutor de eletricidade, o sódio "agarrou" as linhas do campo magnético e as fez girar em torno do tanque em forma de anel.
Este envolvimento e alongamento, que é chamado de efeito Ômega, criou um campo magnético na direção do fluxo do sódio que chegou a ser oito vezes mais forte do que o campo original.
Mas o efeito Ômega não é suficiente para que um campo magnético se auto-sustente. Para completar o dínamo, a equipe vai precisar dobrar uma parte do campo amplificado na direção radial original.
Isto poderá ser feito pelo chamado efeito Alfa, que resulta de movimento helicoidal do fluido.
A turbulência, com os seus redemoinhos espirais, é uma fonte natural de movimento helicoidal, mas o grupo espera criar um efeito Alfa suave, sem turbulência, disparando jatos de sódio a partir do fundo do tanque rotativo.
"A mensagem importante em termos de física é que os fluxos laminares podem produzir campos magnéticos em grande escala mais facilmente do que os fluxos turbulentos," comentou Cary Forest, da Universidade de Wisconsin, que trabalha em outro experimento de dínamo fluido.
Mas o próprio Forest salienta que a turbulência tem sido observada nos dínamos estelares e galácticos. Outros pesquisadores admitem que a turbulência diminui a eficiência dos dínamos fluidos, mas que a turbulência, seria inevitável.
O projeto Alfa-Ômega pode tirar essas dúvidas. E, se Fores e outros tiverem razão, exatamente por não reproduzir com naturalidade os processos que ocorrem nas estrelas e nos planetas, o experimento poderá revelar o peso que a turbulência exerce neles. E, também, será possível gerar campos magnéticos de alta potência, eventualmente com diversas aplicações práticas.
Fonte: Physical Review Letters

terça-feira, 7 de junho de 2011

Interpretações quânticas são questionadas

O cientista Aephraim Steinberg, da Universidade de Toronto, no Canadá, coordenou uma equipe internacional de experimentalistas que demonstrou que a tecnologia atual já é capaz de fazer medições sem afetar as partículas quânticas, e que estas partículas podem se comportar como ondas e partículas ao mesmo tempo.
experimento da dupla fenda
© Revista Física (experimento da dupla fenda)
Uma das demonstrações mais famosas da mecânica quântica é o chamado experimento da dupla fenda, que ensejou as discussões entre Niels Bohr e Albert Einstein, em 1927.
Quando um canhão dispara elétrons rumo a uma fenda, elas batem do outro lado de forma discreta. Mas quando a chapa tem duas fendas, o que se vê do outro lado é um padrão de interferência.
As seções claras e escuras do padrão de interferência correspondem aos picos e vales das ondas interferindo mutuamente, mostrando que as "partículas" passam simultaneamente pelas duas fendas, ou seja, comportam-se como ondas.
Contudo, quando se tenta colocar um detector em cada fenda, para ver em qual delas a partícula está passando, o padrão de interferência é destruído. Portanto, não se pode observar a partícula passando por uma das duas fendas sem destruir o efeito de interferência.
Isso deu origem ao famoso Princípio da Incerteza de Heisenberg, que estabelece que não é possível, ao mesmo tempo, medir a posição e o momento de uma partícula quântica.
Atualmente, a tecnologia alcançou um ponto que permite a realização de experimentos detalhados em sistemas quânticos individuais, com aplicações potenciais como a criptografia e a computação quântica.
Os pesquisadores reconstruíram o experimento da dupla fenda substituindo o canhão de elétrons por uma "lanterna" capaz de disparar um fóton de cada vez.
Foi utilizado um cristal de quartzo chamado calcita, que tem um efeito sobre a luz que depende da direção na qual a luz está se propagando, para medir a direção como uma função da posição.
Com isto, foi possível medir uma média tanto da posição quanto do momento do fóton, uma vez que continua sendo impossível determinar as informações para um fóton em particular. A imagem a seguir mostra a densidade de probabilidade que descreve a trajetória característica dos fótons.
densidade de probabilidade
© Science (densidade de probabilidade)
O resultado é uma demonstração realística, mas nada convencional, de que o fóton comporta-se simultaneamente como partícula e como onda, continuando a gerar o padrão de interferência típico das ondas mesmo quando passa por uma única fenda.
Isto foi possível de se medir porque o experimento é capaz de recompor a trajetória média dos fótons, sem interferir com eles, através de uma técnica chamada de medição fraca.
De fato, o experimento terá grande impacto filosófico, uma vez que descreve diretamente sobre as diversas reflexões da mecânica quântica, incluindo a interpretação de Copenhague, e das interpretações menos convencionais de David Bohm e Louis de Broglie.
A chamada teoria da onda piloto, por exemplo, propõe que cada partícula tem uma trajetória bem definida, que a leva diretamente a uma das fendas, enquanto sua onda associada passa pelas duas fendas simultaneamente. O experimento parece dar sustentação a essa interpretação.
O experimento mostra que o Princípio da Incerteza da Heisenberg não é tão rígido quanto parecia, seguindo uma tendência que já vem sendo demonstrada em outros trabalhos.
Esta pesquisa poderá ter aplicações práticas na computação quântica. As portas lógicas dos computadores quânticos poderão ser capazes de repetir uma operação quando a checagem de erro não se mostrar convincente.
Fonte: Science

quarta-feira, 1 de junho de 2011

O elétron é quase perfeitamente redondo

Pesquisadores britânicos descobriram que o elétron é quae que totalmente redondo. Eles fizeram a medição mais precisa até hoje da forma de um elétron, que demonstra que ele é uma esfera quase perfeita.
elétrons orbitando o núcleo do átomo
© ALAMY (elétrons orbitando o núcleo do átomo)
As partículas subatômicas só diferem de ser perfeitamente redondas por menos de 0,000000000000000000000000001 centímetros. Isso significa que se um elétron for ampliado para o tamanho do Sistema Solar, ainda parecerá esférico dentro da largura de um fio de cabelo humano.
Os físicos estudaram os elétrons dentro de moléculas chamadas de flúor itérbio. Utilizando um laser, eles fizeram medições do movimento dos elétrons, procurando qualquer balanço que sugerisse que a forma da molécula era distorcida (o que ocorreria se os elétrons não fossem perfeitamente redondos).
Por mais de uma década, tais imperfeições não foram observadas. Foi uma medida muito difícil de fazer, mas agora esse conhecimento vai melhorar teorias fundamentais da física.
Os resultados são importantes no estudo da antimatéria, uma substância elusiva que se comporta da mesma maneira como a matéria comum, exceto que tem uma carga elétrica oposta.
Por exemplo, a versão de antimatéria dos elétrons com carga negativa é a carga positiva anti-elétron, conhecido como pósitron. Compreender a forma do elétron pode ajudar os pesquisadores a entender como os pósitrons se comportam e como a matéria difere da antimatéria.
Segundo as leis da física atualmente aceitas, o Big Bang criou tanta antimatéria quanto matéria comum. No entanto, desde que o conceito foi concebido pelo ganhador do Prêmio Nobel Paul Dirac, em 1928, a antimatéria só foi encontrada em pequenas quantidades a partir de fontes como raios cósmicos e algumas substâncias radioativas.
Os cientistas querem explicar essa falta de antimatéria procurando por pequenas diferenças entre o comportamento da matéria e da antimatéria, que até agora não foi observada.
O fato dos pesquisadores descobrirem que os elétrons não são redondos pode provar que o comportamento da matéria e da antimatéria difere mais do que os físicos pensavam anteriormente. Assim, poderia explicar como toda a antimatéria desapareceu do universo, deixando apenas a matéria comum.
Segundo cientistas, os astrônomos já procuraram direto na borda do universo visível, e mesmo eles só viram matéria comum, e nenhum esconderijo para uma grande porção de antimatéria. Os físicos não sabem o que aconteceu com ela, mas essa pesquisa pode ajudar a confirmar ou descartar algumas das explicações possíveis.
Fonte: Nature