Mostrando postagens com marcador Fusão Nuclear. Mostrar todas as postagens
Mostrando postagens com marcador Fusão Nuclear. Mostrar todas as postagens

sábado, 29 de outubro de 2011

Rumo a estrela artificial controlada

Usando 60 raios lasers de alta potência, combinados para atingir uma cápsula minúscula, físicos produziram um plasma com condições de densidade de energia extremas.

© LLNL (Omega Laser)

Essas condições incluem uma pressão de 100 bilhões de atmosferas, uma temperatura de 200 milhões Kelvin e uma densidade 20 vezes maior que a do ouro.

Antes desse super disparo de laser, essas condições só podiam ser encontradas no núcleo de planetas gigantes, como Júpiter e Saturno, ou no interior das estrelas.

O experimento é um dos caminhos rumo à construção de uma "estrela artificial" controlada, onde a fusão nuclear poderá ser explorada para a geração sustentável de energia.

Muitos físicos acreditam que a fusão nuclear a laser seja a melhor saída para essa fonte de energia limpa.

O laboratório Omega Laser Facility, localizado na Universidade de Rochester, nos Estados Unidos, onde o recorde acaba de ser batido, é um dos que trabalham nesse sentido.

Os pesquisadores normalmente usam aceleradores para estudar as reações nucleares.

Neste laboratório, a equipe usou uma abordagem diferente, criando um plasma quente e denso, no qual elétrons são arrancados dos átomos para criar um plasma, o quarto estado da matéria.

O estado de plasma está presente nas estrelas, nos relâmpagos e até nas lâmpadas fluorescentes, na verdade 99% do Universo visível é composto de plasma.

Para obter esse plasma, todos os 60 feixes de laser do Laboratório Ômega foram dirigidos simultaneamente para a superfície de uma cápsula de vidro de um milímetro de diâmetro, cheia de isótopos pesados de hidrogênio - deutério e trítio.

laser sobre uma esfera de vidro com deutério e trítio

© LLNL (laser sobre uma esfera de vidro com deutério e trítio)

Os feixes de laser geram um plasma em rápida expansão, de alta temperatura, na superfície da cápsula, fazendo-a implodir.

Esta implosão, por sua vez, cria um plasma extremamente quente (100 milhões Kelvin) de íons de deutério e trítio, e de elétrons, dentro da cápsula.

Uma pequena fração dos íons de deutério e trítio se fundem, um processo que gera um nêutron viajando a um sexto da velocidade da luz, com cerca de 14,1 milhões de elétron-volts de energia - em comparação, a combustão de uma substância química comum, como a madeira ou o carvão, gera cerca de 1 elétron-volt de energia.

Conforme esses nêutrons energizados escapam da cápsula que está implodindo, uma pequena fração colide com os íons de deutério e trítio.

A partir dessas colisões, bastante raras, e da correspondente transferência de energia dos nêutrons para os íons, os pesquisadores podem obter uma medição precisa do processo de fusão nuclear.

Fonte: Physical Review Letters

terça-feira, 20 de setembro de 2011

Energia gerada por fusão nuclear a laser

O sonho de dominar a energia das estrelas continua prosperando.
laser implode a esfera contendo hidrogênio pesado
© LLNL/NIF (laser implode a esfera contendo hidrogênio pesado)
A fusão a laser é uma tecnologia diferente da chamada "fusão magneticamente induzida", usada no ITER e em outros experimentos.
Esta tecnologia está sendo usada no projeto Hiper, que pretende iniciar a fusão nuclear usando um equipamento de raio laser, e no projeto JET (Joint European Torus).
Agora, pelo menos três parceiros de peso acabam de anunciar um esforço conjunto para tentar domar a fusão nuclear a laser.
A equipe será formada pelo Laboratório Nacional Lawrence Livermore (EUA), Laboratório Rutherford Appleton (Grã-Bretanha) e pela empresa privada AWE.
Em altas temperaturas e pressões, os núcleos dos isótopos pesados de hidrogênio - deutério e trítio - formam um plasma, podendo ser fundidos para formar hélio, liberando energia e um nêutron.
Disparando feixes sincronizados de laser pulsado é possível vaporizar a superfície de uma esfera cheia desses isótopos, forçando a esfera a implodir, produzindo assim as condições de fusão em seu interior durante alguns bilionésimos de segundo.
O efeito físico se assemelha à detonação de uma bomba termonuclear (bomba de hidrogênio), embora em uma escala muito menor.
Os reatores de fusão magnética disparam um poderoso pulso elétrico sobre o hidrogênio pesado para produzir um plasma. Um forte campo magnético é então usado para confinar o plasma, antes que a fusão possa ocorrer. Isso não é fácil, porque o plasma pode tornar-se instável e mesmo vazar.
Por outro lado, a fusão a laser produz temperaturas e pressões muito mais elevadas, de modo que a fusão ocorre mais rápido - com isto, o plasma precisa ser confinado por apenas alguns bilionésimos de segundo, o que é muito mais simples.
A fusão nuclear de qualquer um dos dois tipos é atraente como fonte de energia porque seu combustível é mais abundante, e o processo não produz os isótopos altamente radioativos gerados pela divisão de átomos de urânio.
Mas os nêutrons da fusão são perigosos e tornarão radioativos os materiais usados no interior do reator - estima-se que as placas internas de um reator tokamak precisarão ser constantemente trocadas.
O trítio no combustível também é radioativo: ele emite partículas beta, mas tem a vantagem de ter uma meia-vida de apenas 12,5 anos.
A fusão a laser vem sendo estudada desde a década de 1960, com fins bélicos.
Hoje, o maior laser de fusão é o NIF (National Ignition Facility) em Livermore, que é um dos participantes do acordo agora anunciado.
Até o final do próximo ano, o laboratório espera atingir a "ignição", produzindo mais energia a partir da fusão nuclear do que é necessário para gerar o pulso de laser.
Enquanto isso, não se espera que o ITER - que usa a fusão magnética - atinja a ignição antes de 2020.
Lasers menores estão sendo usados em programas de fusão no Rutherford Appleton (outro parceiro do novo acordo), na Universidade de Rochester (EUA) e na Universidade de Osaka (Japão).
A França está construindo um sistema do mesmo porte do NIF chamado Laser Megajoule.
Mike Dunne, do Laboratório Lawrence Livermore, diz que, se tudo correr bem, uma usina de fusão de 440 megawatts poderá ser instalada em uma década. Projetos futuros, maiores, poderiam atingir até 1 GW (1.000.000.000 W).
Mas é bom não confiar muito nessas previsões. Tudo é novo na área, e os físicos e os engenheiros nem mesmo sabem os problemas que terão pela frente.
Como esta aplicação é nova na área, muitos problemas surgirão. Portanto, ainda não há previsão consistente dos resultados.
Fonte: New Scientist

quinta-feira, 24 de março de 2011

Criada a antimatéria mais pesada

Um grupo internacional de cientistas, com participação de brasileiros, criou uma nova forma de antimatéria que é a mais pesada já vista.
colisão de núcleos atômicos
© RHIC/STAR (colisão de núcleos atômicos)
Até então, a antimatéria mais complexa e mais pesada já criada era um híbrido de hélio e hidrogênio, um anti-hélio-3, com dois antiprótons e um antinêutron.
Agora foram criados núcleos de anti-hélio verdadeiro, contendo dois antiprótons e dois antinêutrons, ou anti-hélio-4.
O anti-hélio foi detectado no RHIC (Relativistic Heavy Ion Collider -Colisor Relativístico de Íons Pesados), que fica localizado em Upton, no estado de Nova Iorque. O colisor é operado pela Colaboração STAR, que reúne 584 cientistas de 54 instituições de 12 países diferentes.
No ano passado, a equipe STAR anunciou a descoberta do anti-hipertríton, formado por um antipróton, um antinêutron e uma partícula instável chamada anti-lambda. O anti-hipertriton era então antipartícula mais pesada que se conhecia.
Mas os 18 núcleos de anti-hélio-4 observados agora bateram os recordes anteriores.
Anti-partículas têm carga elétrica oposta à das partículas de matéria ordinária - os antinêutrons, que são eletricamente neutros, são compostos de antiquarks que têm carga oposta à dos quarks normais.
As partículas de antimatéria aniquilam-se no contato com a matéria comum, emitindo um flash de raios gama, o que as torna notoriamente difíceis de encontrar e observar.
Mas isto vem mudando rapidamente. No ano passado cientistas conseguiram capturar a antimatéria pela primeira vez e, há poucas semanas, anunciaram o desenvolvimento de uma garrafa capaz de guardar antimatéria.
No RHIC, os cientistas colidem núcleos atômicos pesados, como chumbo e ouro, onde a energia é tão densa que podem ser criadas muitas novas partículas.
A imagem a seguir mostra a anti-tabela periódica, que também é conhecida como Quadro 3-D dos nuclídeos.
anti-tabela periódica
© RHIC/STAR (anti-tabela periódica)
A Tabela Periódica normal organiza os elementos de acordo com seu número atômico (Z), que determina as propriedades químicas de cada elemento. Os físicos também trabalham com o eixo N, que dá o número de nêutrons no núcleo de cada átomo.
O terceiro eixo representa a estranheza (S), que é zero para toda a matéria que ocorre naturalmente, mas pode ser não-zero no núcleo de estrelas colapsadas.
Os antinúcleos ficam na porção Z e N negativos, e o novo antinúcleo descoberto agora (mostrado em magenta na ilustração) estende a anti-tabela periódica para a região da antimatéria estranha.
O próximo anti-elemento dessa nascente anti-tabela periódica, o antilítio, poderia formar antimatéria sólida a temperatura ambiente, mas isso será algo muito mais difícil de fazer.
A equipe STAR calcula que o antilítio irá nascer de colisões com menos de um milionésimo da frequência de formação do anti-hélio-4 agora observado. Na prática, isso o coloca fora do alcance dos colisores de hoje, incluindo o LHC.
A obtenção do anti-hélio não responde por que é que o Universo não está repleto de antimatéria.
De fato, as teorias atuais afirmam que matéria e antimatéria foram criadas em quantidades iguais nos primeiros instantes do Universo, mas, por razões desconhecidas, a matéria prevaleceu.
Um observatório espacial, chamado AMS (Espectrômetro Magnético Alfa), que será levado para a Estação Espacial Internacional em Abril pelo ônibus espacial Endeavour, vai tentar minimizar esse problema.
Já se sabe que os antiprótons ocorrem naturalmente em pequenas quantidades entre as partículas de alta energia, os chamados raios cósmicos, que atingem a Terra.
O AMS irá procurar por antipartículas mais pesadas. Mas se o anti-hélio é produzido apenas raramente em colisões, como mostrado agora pelo RHIC, então o AMS não deverá detectar anti-hélios.
Se ele encontrar altos níveis de anti-hélio, isto poderia reforçar a teoria de que a antimatéria não foi destruída no início do Universo, mas simplesmente separada em uma parte diferente do espaço, onde não entra em contato com a matéria.
Fonte: New Scientist

domingo, 21 de março de 2010

Stellarator, um reator de fusão nuclear

Num primeiro olhar, a impressão é que as partes que compõem o reator de pesquisa Wendelstein 7-X caíram do céu e se agruparam aleatoriamente, pois o aparelho não tem nada de simetria.
Entre os objetos estão numerosos anéis de metal, com dois metros de diâmetro, que aparentemente sofreram danos numa possível queda. Mas, na verdade, cada curvatura foi feita propositalmente, esculpida milimetricamente.
 anéis magnéticos
© Instituto Max Planck (anéis magnéticos do reator)
Lutz Wegener é o supervisor técnico do reator em construção. Ele é responsável pelos cerca de 800 procedimentos necessários até a finalização, em 2014, do maior reator de pesquisa da Alemanha.
O projeto visa recriar uma situação semelhante ao Sol e, assim, provar que a fusão nuclear pode criar uma fonte constante de energia.
E os anéis de metal têm um papel importante no conjunto. Cada bobina magnética produz um campo magnético e todas as bobinas magnéticas em conjunto criam um tubo magnético tridimensional, para manter o plasma de fusão no lugar.
O combustível para a fusão é o plasma, formado quando a mistura extremamente fina de gás hidrogênio é exposta à alta pressão e ao calor extremo. A subsequente fusão dos núcleos dos seus átomos libera partículas carregadas eletricamente.
O princípio da criação do plasma é simples: uma matéria é aquecida, passa do estado sólido ao líquido e, quando sofre mais aquecimento, o líquido se transforma em gás e, se é aquecida ainda mais, se transforma em plasma.
O processo envolve dois isótopos de hidrogênio combinados, o deutério e o trítio, que leva à criação do gás hélio e libera um nêutron livre. Ao contrário de nêutrons "normais", um nêutron livre tem uma carga e é essa energia que pode ser transformada em eletricidade.
tokamak
© Instituto Max Planck (tokamak – formação de plasma)
A boa notícia sobre esse processo é que a matéria-prima é infinita. O deutério pode ser facilmente retirado da água e o trítio é produzido a partir do lítio.
A fusão nuclear de apenas um grama das duas substâncias gera a mesma quantidade de energia equivalente a 11 toneladas de carvão; e cumpre a missão sem emissões de dióxido de carbono, que é prejudicial a longo prazo e tem risco de explosão.
Há muitas armadilhas em potencial associadas ao esforço de recriar o Sol na forma de um reator, uma delas é a temperatura inimaginável de 100 milhões de graus Celsius.
A maior preocupação dos operadores, no entanto, é a possibilidade do plasma entrar em contato com a parede externa do reator durante a fusão, provocando, assim, a parada do processo.
Para impedir que isso aconteça, 70 bobinas magnéticas gigantes têm que criar uma gaiola magnética estável e, para isso, é necessário magnetos extremamente resistentes.
Com capacidade máxima, 100 toneladas de força magnética estarão concentradas numa estrutura de aço do tamanho de uma mão. Os magnetos são resfriados até 263 graus negativos com hélio líquido, viram supercondutores e permitem que eletricidade suficiente flua sem impedimento.
Essa é a única maneira de produzir eletricidade suficiente num espaço curto o bastante para obter o plasma aquecido a 100 milhões de graus Celsius.
stellarator
© Instituto Max Planck (stellarator – fase de testes)
Esse tipo de reator é conhecido como stellarator e lida com a fusão tokamak, que são os reatores mais usados por físicos até o momento por serem mais fácil de construir.
Mas essa simplicidade tem seu lado negativo, diz Lutz Wegener. Reatores tokamak podem aquecer o plasma por 10 a 30 segundos. Até o mais avançado do tipo, que fica num instituto francês, é capaz de operar por curto espaço de tempo por vez.
O fato de o mundo ainda não contar com uma instalação capaz de realizar fusão desfavorece as pesquisas. E mesmo se o projeto de 430 milhões de euros não forneça nenhuma energia, ele provará se a fusão nuclear permanente é possível ou não.
Fonte: Instituto Max Planck

segunda-feira, 25 de janeiro de 2010

Novo processo para fusão nuclear em plasma

Um experimento que reproduziu em laboratório as características dos campos magnéticos da Terra e de outros planetas pode abrir caminho para o desenvolvimento de novos processos de fusão nuclear, segundo um estudo publicado pela revista "Nature Physics".
Os pesquisadores do Instituto Tecnológico de Massachussets (MIT) e da Universidade de Columbia, em Nova York, utilizaram um ímã de meia tonelada, mantido em "levitação" por meio de outro ímã, para conseguir controlar o plasma (gás ionizado). O plasma, quarto estado da matéria está em toda parte no universo: em estrelas, nos ventos solares, na ionsfera, em raios. É constituído por partículas carregadas eletricamente: íons e elétrons.
levitated dipole experiment
© LDX (Levitated Dipole Experiment) 
No "Levitated Dipole Experiment" ("Experimento Dipolo Levitante"), realizado no MIT, o ímã supercondutor, resfriado a -269°C com hélio líquido, controlou os movimentos de um plasma aquecido, que estava em um compartimento adjacente.
A turbulência gerada produziu uma concentração mais densa de plasma, uma etapa crucial para fazer com que os átomos se fundam ao invés de aumentar sua dispersão, como ocorre normalmente.
Observado durante a interação de plasmas com os campos magnéticos da Terra ou de Júpiter, este tipo de concentração sob efeito de um campo magnético "jamais havia sido recriado em laboratório", afirmou o MIT.
Este enfoque "pode dar origem a uma via alternativa para a fusão nuclear", destacou Jay Kesner, do MIT, um dos coordenadores do projeto LDX junto com Michael Mauel, da Universidade de Columbia.
Fonte de resíduos radioativos, a fissão nuclear nas centrais utilizadas atualmente consiste em partir os núcleos dos átomos. Por outro lado, se passarem por um processo de fusão, é possível conseguir uma fonte de energia limpa.
Fonte: Nature Physics