terça-feira, 19 de abril de 2016

Uma maneira de sondar o reino quântico

Em 1930, o físico teórico alemão Werner Heisenberg introduziu um experimento de reflexão, agora conhecido como microscópio de Heisenberg, para tentar mostrar por que é impossível medir a localização de um átomo com precisão ilimitada.

sondando o reino quântico

© Revista Física (sondando o reino quântico)

Heisenberg tentou medir a posição de algo como um átomo, atirando luz nele. A luz viaja como uma onda, e Heisenberg sabia que diferentes comprimentos de onda poderia dar-lhe diferentes graus de confiança quando usado para medir onde algo está no espaço. Comprimentos de onda curtos podem fornecer uma medição mais precisa do que os longos, com o intuito de usar a luz com um pequeno comprimento de onda para medir a estrutura de um átomo. Mas há um problema: a luz também carrega momentum, e comprimentos de onda curtos carregam mais força do que os longos.
Isso significa que se for utilizada a luz com um comprimento de onda curto para encontrar o átomo, incidirá no átomo uma força com todo esse ímpeto, que irá chutá-lo ao redor e mudará completamente a sua localização (e outras propriedades) no processo. Usar comprimentos de onda mais longos, o átomo se moverá menos, mas também sua medição será mais incerta.

Isso é um dilema: qualquer medição muda o que você está medindo, e melhores medições conduz à mudanças maiores.

Também é possível preparar átomos num estado emaranhado, o que significa que eles agem cooperativamente como um único átomo, não importa o quão longe eles estão uns dos outros. Ao empurrar um, o restante se movimenta como se tivesse empurrado individualmente. E se um átomo se desordenar, ao lançar um pouco de luz nele, geralmente toda a coleção será desordenada.

No passado, estes dois efeitos tornaram impossível medir como os átomos emaranhados estão organizados sem destruir o arranjo e o emaranhamento, que presumivelmente foram preparados para algum propósito específico, como a construção de um computador quântico.

Mas agora, os físicos liderados por T. J. Elliott, da Universidade de Oxford, no Reino Unido propuseram uma maneira de medir as propriedades em grande escala de um grupo de átomos entrelaçados sem estragar o emaranhamento. Não é medir átomos individuais, que é permanentemente fora dos limites, mas é mais do que os físicos conseguiram fazer antes.

Normalmente, quando os átomos são emaranhados, têm que ter cuidado inicialmente para que os átomos são todos mais ou menos iguais. Se existirem muitos tipos diferentes de átomos, eles se tornam muito mais difícil de igualar-se, portanto, o entrelaçamento torna-se mais frágil.
Mas ainda é possível tornar os grupos estáveis ​​de átomos entrelaçados que têm alguns valores discrepantes entre eles. Os pesquisadores demonstraram que estes valores atípicos podem ser usados para medir aspectos sobre o grupo principal sem desordenar o seu emaranhamento.

Isso inclui informações muito básicas, como a densidade de ocupação dos átomos, enquanto eles estão emaranhados, que historicamente tem sido fora do alcance dos físicos nas experiências individuais.

Antes, os físicos tiveram que medir um grupo inteiro dos átomos emaranhados muito rapidamente, admitindo que eles estavam a alterando as propriedades ao redor, assim que era medido esse primeiro átomo. Mais medições podem verificar mais átomos, mas elas estariam cada vez mais incertas ao longo do tempo.

É óbvio, medições ainda mudam as propiedades um pouco, pois a luz ainda está sendo utilizada e o microscópio de Heisenberg ainda  está sendo aplicado, mas as medições não vão destruir todo o sistema, como eles fariam antes.

Este método de medição dos valores extremos é uma janela num novo reino para os físicos, que podiam anteriormente só ver o que  átomos emaranhados faziam, não o que eles estão fazendo.

Os pesquisadores simulou um sistema simples mostrando matematicamente que isso deve funcionar com uma ampla gama de sistemas quânticos onde o emaranhamento desempenha um papel fundamental. E pequenas alterações no método pode torná-lo possível medir as propriedades como a magnetização de átomos emaranhados, em vez de apenas a sua densidade.

Fonte: Physical Review A

Cristal líquido descrito pela Relatividade

Pesquisadores brasileiros e norte-americanos acabam de resolver um quebra-cabeça que há um século desafiava os físicos.

simulação da superfície de um cristal líquido esmético

© PRL (simulação da superfície de um cristal líquido esmético)

O grupo utilizou simulação computacional para explicar a microestrutura dos cristais líquidos esméticos. Trata-se de uma fase do material na qual as moléculas se dispõem em centenas de camadas curvas igualmente espaçadas, separadas umas das outras por distâncias nanométricas.

Em cada camada, as moléculas podem se movimentar livremente, como nos líquidos. Mas, em cada região do material, as camadas apresentam um ordenamento espacial, como ocorre com esferas concêntricas. Diferentes conjuntos de camadas eventualmente se interceptam, produzindo “defeitos”. Estes, com frequência, apresentam a forma de segmentos de elipses, parábolas ou hipérboles – curvas que, desde a Antiguidade, são chamadas de “cônicas”, pelo fato de poderem ser geradas pela intersecção de um cone por um plano.

Assim, quando confinado entre duas lâminas e observado ao microscópio, o cristal líquido esmético tem a aparência de um mosaico, cujas partes componentes são delimitadas por segmentos de cônicas.

“Esses padrões cônicos vinham sendo estudados há mais de um século, a partir do trabalho pioneiro do físico e mineralogista francês Georges Friedel (1865 – 1933), realizado em 1910. Foi ele quem deduziu que, para formar tais padrões ao ser confinado entre as lâminas do microscópio, o cristal líquido esmético precisava ser constituído por camadas igualmente espaçadas de moléculas”, disse Danilo Barbosa Liarte, primeiro autor do artigo e atualmente trabalhando na Cornell University, nos Estados Unidos.

“O grande desafio era entender como seria possível preencher o espaço com essas cônicas. Conseguimos solucionar o problema fazendo uma analogia entre a estrutura dos cristais líquidos esméticos e a estrutura das martensitas, uma fase cristalina do aço”, afirmou o pesquisador.

Assim chamadas em homenagem ao metalurgista alemão Adolf Martens (1850 – 1914), as martensitas também apresentam uma estrutura peculiar, combinando regiões de deformação e orientação distintas. E é isso que lhes confere uma dureza muito superior às de outras formas de aço. Mas é importante ressaltar que os cristais líquidos esméticos e as martensitas são materiais completamente diferentes. O que têm em comum são suas microestruturas, na qual coexistem diversas configurações compatíveis de baixa energia.

As linhas cônicas que aparecem no cristal líquido esmético são chamadas de “defeitos” porque ocorrem nos locais em que um determinado conjunto de camadas moleculares concêntricas é interrompido e as moléculas contíguas situadas além da linha se apresentam dispostas em outro conjunto. Os defeitos são as intersecções entre esses dois conjuntos. E os conjuntos distintos constituem as variantes do cristal líquido esmético.

“Por analogia com as martensitas, essas variantes podem ser pensadas como deformações de uma estrutura básica. No caso das martensitas, a célula unitária se deforma ao longo de uma das três direções – comprimento, largura e altura. E cada deformação define uma variante. As diversas variantes se combinam segundo um princípio de mínima energia, sujeito às condições de contorno”, explicou Liarte.

Porém existe uma importante diferença que torna o estudo dos esméticos muito mais desafiador do que o estudo das martensitas. É que, no caso das martensitas, as configurações de baixa energia podem ser descritas como simples rotações tridimensionais das variantes cristalinas. Porém, no caso dos esméticos, os mínimos de energia podem ser produzidos também por outros tipos de transformações. E foi em relação a esse tópico que Liarte e colegas deram sua contribuição mais interessante, ao utilizarem as transformações de Lorentz para fazer a passagem de uma variante a outra.

Estabelecidas pelo físico holandês Hendrik Lorentz (1853 – 1928), as transformações de Lorentz são um conjunto de equações que descrevem como as medidas de espaço e tempo se alteram quando realizadas em sistemas de referência inerciais diferentes. Utilizadas posteriormente por Einstein, essas equações constituem o arcabouço matemático da teoria da relatividade especial, publicada em 1905.

“Um dos nossos colaboradores, Randall Kamien, da University of Pennsylvania, deduziu recentemente que os diferentes conjuntos de camadas do esmético podiam ser relacionados uns com os outros pelas mesmas equações da relatividade especial, com a condição de se substituir a variável tempo (t) das transformações de Lorentz por uma grandeza que conta o número de camadas do cristal líquido. Essas equações permitem descrever, por exemplo, as mudanças de excentricidade entre as diversas cônicas”, informou Liarte.

Para descrever todas as variantes possíveis, os pesquisadores utilizaram quatro tipos de transformações: rotações, translações, dilatações e transformações de Lorentz. Esses quatro tipos de transformações compõem a chamada invariância de Weyl-Poincaré, que contém todas as formas de simetria da relatividade especial.

O artigo comunicando o resultado é a capa da edição de 8 de abril de 2016 da revista Physical Review Letters: “Weirdest martensite: smectic liquid crystal microstructure and Weyl-Poincaré invariance”.

Fonte: FAPESP (Agência)

domingo, 6 de março de 2016

O valor da constante de acoplamento forte

O valor de um dos parâmetros fundamentais da física, a constante de acoplamento forte (que conecta quarks e glúons, dando origem a hádrons, como os prótons e os nêutrons), determinado pelo pesquisador da Universidade de São Paulo (USP) Diogo Boito e colaboradores, acaba de ser acolhido pelo Particle Data Group (PDG), rede internacional que estabelece as medidas de várias grandezas físicas.

esquema do decaimento do lépton tau

© D. Boito (esquema do decaimento do lépton tau)

A imagem acima mostra o esquema do decaimento do lépton tau feito pelo pesquisador. O tau decai em um neutrino e em um bóson W (em azul). Os quarks são produzidos pelo W e interagem fortemente (bolha rosa), formando os hádrons que são detectados (píons e káons). O processo possibilita determinar um valor para a constante de acoplamento forte.

Boito é professor do Instituto de Física de São Carlos (IFSC-USP). E o valor por ele determinado havia sido publicado há cerca de um ano na revista Physical Review D: “Strong coupling from the revised ALEPH data for hadronic τ decays”.

“A interação entre quarks e glúons é descrita pela Cromodinâmica Quântica (Quantum Cromodynamics – QCD). E, nessa teoria, a constante de acoplamento forte, αs (alpha_s), desempenha papel fundamental. Mas, como essa constante não pode ser medida diretamente, vários grupos de pesquisadores procuram determiná-la de modo indireto, confrontando as predições teóricas com diferentes dados experimentais. Nosso valor foi obtido por meio do decaimento do lépton tau,” disse o pesquisador.

Boito conduz atualmente a pesquisa “Determinação precisa de parâmetros fundamentais da QCD”, apoiada pela FAPESP por meio do programa Jovens Pesquisadores em Centros Emergentes.

A interação forte é a mais poderosa força conhecida. Em uma situação típica, essa interação chega a ser centenas de vezes maior do que a da interação eletromagnética e até 1011 vezes maior que a interação fraca e 1039 vezes maior que a interação gravitacional. Por isso, os quarks e os glúons ficam confinados nos volumes diminutos dos hádrons (da ordem de 10-13centímetros), e não podem ser encontrados livremente na natureza. “Esse confinamento é um dos fatores que tornam tão difícil a determinação da constante de acoplamento forte”, explicou Boito.

O recurso utilizado por ele e por seus colaboradores foi trabalhar com dados obtidos no decaimento do lépton tau (τ). Essa partícula é da mesma natureza do elétron, porém possui massa aproximadamente 3.500 vezes maior. É produzida nos grandes aceleradores de partículas, por exemplo, pela colisão de elétron e antielétron, e dura, em média, apenas 2,9 x 10-13 segundos. Ao decair, o tau produz várias partículas de massa menor. Em um dos decaimentos possíveis são produzidos, entre outras partículas, o quark up e o quark down, que interagem fortemente. Foi esse tipo de decaimento que possibilitou a Boito determinar, indiretamente, um valor para αs.

Um aspecto singular dessa determinação decorreu do fato de a massa do tau ser relativamente baixa. Isso fez com que fosse possível verificar uma previsão teórica conhecida como “liberdade assintótica”, que deu o Prêmio Nobel de Física de 2004 a David Gross, David Politzer e Frank Wilczek. Segundo essa previsão, o valor de αs é menor em energias mais altas e maior em energias mais baixas; ou seja, o valor não é propriamente constante. “Nossa determinação contribui para corroborar essa previsão na região de energias baixas,” afirmou o pesquisador.

Como a determinação pode ser feita também de outras maneiras, valores ligeiramente diferentes são obtidos por diversos grupos de pesquisa. As determinações são avaliadas pelos especialistas do PDG e, quando consideradas consistentes, seus valores são incorporados ao rol acolhido pela colaboração internacional. A partir dessa lista, o PDG publica um valor médio internacional, que serve de referência para todos os pesquisadores da área e que é atualizado a cada dois anos. A constante de acoplamento forte é um número puro, adimensional. O último valor médio, publicado em fevereiro de 2016, que agrega o resultado de Boito e colaboradores, foi de αs = 0,1181 ± 0,0013.

Fonte: FAPESP (Agência)

segunda-feira, 15 de fevereiro de 2016

Detectadas ondas gravitacionais

As ondas gravitacionais, as ondulações cósmicas que distorcem o espaço-tempo, foram diretamente detectadas pela primeira vez.

fusão de dois buracos negros

© Rochester Institute of Technology (fusão de dois buracos negros)

Em um anúncio feito no dia 11 de fevereiro de 2016, os pesquisadores do Laser Interferometer Gravitational-Wave Observatory (LIGO) relataram a detecção de ondas gravitacionais. O sinal captado pelo LIGO veio da colisão de dois buracos negros, e foi detectado no dia 14 de setembro de 2015 por detectores gêmeos na Louisiana e em Washington, nos EUA. A oscilação surgiu com uma frequência de 35 ciclos por segundo (Hz), e acelerou até 250 Hz, antes de desaparecer, 0,25 segundos mais tarde. Com o aumento da frequência, dois sinais surgem juntos e em forma espiral, cujo pico foi deformado de 1,0×10-21.
O atraso de 0,007 segundos entre os sinais registados pelos detetores da LIGO foi essencial para analisar a velocidade da onda em ambos os detetores.

detecção das ondas gravitacionais

© LIGO (detecção das ondas gravitacionais)

Esta colisão cósmica enviou ondas gravitacionais que fluíram na velocidade da luz, causando ondulações no tecido do espaço-tempo, semelhante à forma como uma pedra perturba a água de uma lagoa quando é arremessada em seu centro. Os pesquisadores disseram que a colisão ocorreu a 1,3 bilhões de anos atrás, entre buracos negros com 29 e 36 vezes mais massa do que o Sol, respectivamente. Durante o ocorrido, cerca de três vezes a massa do Sol foi convertida em ondas gravitacionais em menos de um segundo, gerando uma potência de pico de aproximadamente 50 vezes a de todo o Universo visível.

"Nossa observação de ondas gravitacionais cumpre uma meta ambiciosa de cinco décadas, que era a de detectar esse fenômeno diretamente, e assim, compreender melhor o Universo, e claro, o legado de Einstein no 100º aniversário de sua Teoria da Relatividade Geral", disse David Reitze, do Instituto de Tecnologia da Califórnia e diretor executivo do LIGO, nos EUA.
A detecção das ondas gravitacionais é um marco na astronomia e astrofísica. Ao contrário de ondas de luz, as ondas gravitacionais não ficam distorcidas ou alteradas por interações com a matéria, enquanto se propagam pelo espaço, carregando a informação sobre os objetos e eventos que propiciram sua criação.

As ondas gravitacionais foram inicialmente previstas por Albert Einstein em sua famosa Teoria da Relatividade Geral de 1915. Um aspecto relevante desta teoria diz que o espaço e o tempo não são duas coisas separadas, mas sim estão ligados entre si em um único tecido: o espaço-tempo. Objetos massivos, como estrelas, esticam e curvam este tecido, assim como uma bola de boliche distorce uma lona. Isso faz com que objetos (como planetas) e até mesmo a luz percorram caminhos curvos em torno desses corpos mais massivos.

As ondas gravitacionais afetam este tecido, causando distorções no espaço-tempo. Estudos anteriores confirmaram a existência de ondas gravitacionais, que são geradas pela aceleração (ou desaceleração) de objetos massivos, mas através de métodos indiretos. A descoberta do LIGO é a primeira detecção direta desse fenômeno enigmático.

O observatório LIGO pode detectar ondas gravitacionais relativamente fortes, que são criadas por acontecimentos dramáticos, como dois buracos negros que se encontram numa colisão, ou fusões de estrelas de nêutrons. O detector também pode encontrar ondas gravitacionais geradas por uma explosão de estrela, conhecida como supernova, segundo os pesquisadores.
Distinguir essas ondulações no espaço-tempo é um grande desafio. Como uma onda gravitacional passa através da Terra, e espreme o espaço em uma direção e estende-o em outra, o LIGO observa essa curvatura do espaço-tempo usando dois detectores em forma de L.

Cada braço de cada detector tem 4 km de comprimento. Perto do ponto em que os dois braços se encontram, um impulso de luz de laser é lançado para baixo de cada braço simultaneamente. Os pulsos viajam por essas extremidades e saltam para fora, num espelho na extremidade, e depois voltam perto do ponto de partida.

Se uma onda gravitacional passa, ela vai comprimir um braço do detector e esticar o outro. Como resultado, o feixe de luz que viaja para baixo do braço esticado vai demorar um pouco mais para voltar ao ponto de partida do que o feixe de luz que viaja no braço que foi comprimido. Se o mesmo sinal é visto por ambos os detectores, os pesquisadores podem ter certeza de que o sinal é real, e não o resultado de condições ambientais em um dos locais. Gravar o sinal em dois locais diferentes também permite aos cientistas encontrar a fonte da onda gravitacional no céu por triangulação.
A mudança no comprimento de cada braço é muito menor do que a largura de um núcleo atômico. Se o detector LIGO se estendesse desde o Sol até a estrela mais próxima, a Proxima Centauri, localizada a 40,14 trilhões de km de distância, uma onda gravitacional iria encolher o detector na largura de apenas um fio de cabelo humano.

Esta não é a primeira vez que as ondas gravitacionais ganham as manchetes do mundo. Em 2014, pesquisadores usaram o telescópio BICEP2 na Antártida, e anunciaram a detecção de assinaturas de ondas gravitacionais à luz microondas que restou do Big Bang, a radiação cósmica de fundo. Mas esse resultado se desfez quando as observações do observatório espacial Planck mostrou que as alegadas assinaturas foram, provavelmente, apenas poeira espacial.

Enquanto isso, outras deduções podem ocorrer em curto prazo. Os pesquisadores do LIGO ainda estão analisando os dados recentes e planejam começar a coletar sinais novamente em julho. O reconstruído detector italiano VIRGO, um interferômetro com braços de 3 km, também irá coletar novos dados ainda este ano.

Os físicos esperam ansiosamente a próxima onda!

Fonte: Space & Physical Review Letters

domingo, 14 de fevereiro de 2016

A evolução da fusão nuclear

Cientistas do Hefei Institutes of Physical Science da Chinese Academy of Sciences (CASHIPS), na China, conseguiram alcançar temperaturas três vezes maiores que a do nosso Sol ao realizar uma fusão nuclear.

interior do Tokamak chinês

© CASHIPS (interior do Tokamak chinês)

O experimento durou 102 segundos e tornando a fusão nuclear artificial mais longa que já existiu no planeta. O feito representou um grande avanço na corrida para tornar realidade um dos maiores desafios científicos do século XXI: conseguir criar uma fonte de energia viável a partir da fusão nuclear, imitando o processo que acontece no Sol.

Utilizando o reator de fusão termonuclear Tokamak Superconductor Experimental Advanced (EAST), os pesquisadores elevaram a temperatura do hidrogênio para aproximadamente 50 milhões de graus Celsius (a temperatura do núcleo do Sol é cerca de 15 milhões de graus Celsius), transformando o gás hidrogênio em plasma.

O maior obstáculo da fusão para ser viável como fonte de energia é o confinamento do plasma durante tempo suficientemente longo. Esta foi a grande façanha dos chineses, que chegaram mais longe do que ninguém nesse aspecto.

"O processo foi conseguido através do aquecimento com plasma confinado por uma supercondução magnética," disse Li Ge, pesquisador do Hefei Institutes of Physical Science.

Conseguir uma fusão nuclear estável e controlada é uma das grandes ambições da comunidade científica internacional, uma vez que tem potencial como fonte de energia limpa e é um recurso quase inesgotável.

A novidade do experimento chinês, não está nessa alta temperatura alcançada, mas no tempo que conseguiram mantê-la; em dezembro de 2015, uma equipe do Instituto Max Planck, na Alemanha, conseguiu atingir 80 milhões de graus Celsius em um teste similar. No entanto, enquanto os cientistas alemães, e antes deles outros europeus, japoneses e americanos, consideraram um sucesso chegar a estas temperaturas em uma fração de segundo, os chineses mantiveram o processo durante um minuto e 42 segundos.

Controlar esta operação por tanto tempo demonstra uma evolução técnica que aproxima os pesquisadores da chegada de reatores nucleares de fusão capazes de imitar o processo que acontece no Sol de forma natural, gerando energia.

A fusão é uma reação química que consiste na união de dois átomos para formar um maior, liberando uma enorme quantidade de energia no processo, o mesmo utilizado, por exemplo, na bomba de hidrogênio. A energia obtida neste tipo de processo é mais potente que a realizada nas usinas nucleares, que efetuam fissão de átomos gerando átomos menores.

Para explorar a viabilidade da fusão de hidrogênio para a geração de energia uma aliança formada pelos Estados Unidos, União Europeia, China, Rússia, Japão, Índia e Coreia do Sul desenvolveram o projeto ITER (Reator Internacional Termonuclear Experimental), que está sendo construído no sul da França. O EAST chinês é uma espécie de versão em pequena escala do ITER, e os dados de seu último experimento serão disponibilizados aos parceiros internacionais que participam desse projeto, segundo anunciou a Academia de Ciências da China.

O próximo objetivo dos pesquisadores chineses é chegar aos 100 milhões de graus e preservá-los durante 1.000 segundos, mas o reator termonuclear terá que ser atualizado.

Fonte: Hefei Institutes of Physical Science

sexta-feira, 29 de janeiro de 2016

Refinada a medida da carga do antihidrogênio

Uma pesquisa internacional com participação brasileira consegue medir com precisão 20 vezes maior que a anterior o limite de uma possível carga elétrica do antihidrogênio, átomo de antimatéria produzida em laboratório.

Alpha

© Revista Física (ilustração do experimento Alpha)

Resultados aproximam a ciência de comprovar experimentalmente conceitos teóricos. Embora prevista há décadas por diversas teorias físicas, a antimatéria não pode ser encontrada na natureza. Criada em laboratório, é de difícil estudo, pois, as partículas se aniquilam ao encontrar paredes ou matéria comum e, além disso, precisam ser resfriadas para uma análise mais cuidadosa. Esforços recentes, no entanto, vêm obtendo resultados cada vez mais promissores para a física contemporânea. Uma equipe internacional de cientistas, depois de conseguir produzir o antihidrogênio, tem aprofundado cada vez mais seu estudo, e conseguiu colocar um limite com precisão ainda maior na carga do antiátomo.

O conceito de antimatéria é do físico britânico Paul Dirac (1902-1984), e as teorias físicas mais consagradas preveem que, na grande explosão que criou o Universo, o Big Bang, matéria e antimatéria surgiram em quantidades praticamente iguais. Uma é equivalente a outra, com carga trocada; isto é, a cada partícula da matéria (por exemplo, o elétron, de carga negativa) corresponde uma partícula de antimatéria (o antielétron ou pósitron), idêntica mas de carga oposta (positiva), onde uma aniquilaria a outra. Uma questão ainda sem resposta é por que vemos tanta matéria no Universo e ainda não conseguimos observar a antimatéria livre.

Quando os cientistas preveem teoricamente uma coisa que não conseguem observar diretamente no mundo natural, o caminho é quase sempre tentar demonstrar esse fato em laboratório. Foi seguindo essa linha que o primeiro antiátomo em baixas velocidades foi criado pelo grupo de pesquisa Athena em 2002, no acelerador de partículas mais poderoso do mundo, no Centro Europeu de Pesquisa Nuclear (CERN), localizado na Suíça. Formado por um antipróton e um pósitron, o antihidrogênio foi um grande passo, mas o desafio continuou: a partícula gerada tinha enorme energia, e aprisioná-la para um estudo mais aprofundado levou anos.

Finalmente, em 2010, a equipe Alpha, que deu sequência ao grupo Athena, anunciou o aprisionamento do antihidrogênio e a comprovação de que o antiátomo tinha a carga muito pequena, próxima de neutra, como previsto pela teoria. Agora, com novo método, a medição da carga do antiátomo ganhou precisão cerca de 20 vezes maior.

O antiátomo se mostrou neutro com uma carga menor que 0,7 parte por bilhão da carga elementar do elétron. A neutralidade dos átomos e moléculas constituidos de matéria já está comprovada com erro menor do que 10−21e para uma variada gama de espécies, incluindo H2, He e SF6.

“Esta é a medida mais precisa jamais feita da nulidade da carga do antihidrogênio,” celebra o físico Cláudio Lenz Cesar, da Universidade Federal do Rio de Janeiro, um dos três brasileiros que participam do projeto composto por um grupo de 50 cientistas. Os outros dois brasileiros são: Daniel de Miranda Silveira e Rodrigo Lage Sacramento.

O novo método para verificar a carga do antiátomo consistiu na aplicação dos chamados potenciais elétricos estocásticos, com a metodologia do caminho aleatório. O método consiste em aplicar pulsos aleatórios sobre antiátomos presos em uma armadilha chamada garrafa magnética, a mesma usada pelo grupo para verificar o comportamento do antihidrogênio em relação à gravidade.

A aplicação de pulsos aleatórios mexeria com uma possível carga dos antiátomos, ora aumentando, ora diminuindo sua energia. Então, os átomos passariam por um estágio de maior energia e escapariam da armadilha. “Se, no final, houvesse alguma carga nos antiátomos, a tendência seria que todos escapassem, deixando a garrafa magnética vazia,” conta Lenz.

Não foi o que aconteceu no experimento. Mesmo após repetidos pulsos e o desligamento do campo magnético da armadilha, o antihidrogênio não escapou da garrafa, o que sugere que não teria ganho energia. Sua carga, portanto, aproxima-se de zero, assim como a do hidrogênio.

Os resultados animadores já deixaram a equipe do Alpha na expectativa das próximas descobertas. Segundo Lenz, o próximo passo da pesquisa é lançar um feixe de laser ultrapreciso sobre o antihidrogênio, o que permitiria observá-lo ainda melhor e medir  seus níveis quânticos de energia com uma precisão na ordem de partes por trilhão. “Este é o nosso objetivo desde que começamos a pesquisa, há 20 anos, e está prestes a se concretizar,” anuncia o pesquisador.

Este trabalho foi descrito na revista Nature.

Fonte: Ciência Hoje

segunda-feira, 18 de janeiro de 2016

Um demônio de Maxwell autônomo

Em 1867, o físico escocês James Clerk Maxwell desafiou a segunda lei da termodinâmica, segundo a qual a entropia em um sistema fechado sempre deve aumentar.

demônio de Maxwell autônomo

© J. Koski (demônio de Maxwell autônomo)

Na ilustração acima, quando o demônio vê o elétron entrar na ilha (1), ele o aprisiona com uma carga positiva (2). Quando o elétron deixa a ilha (3), o demônio solta uma carga negativa (4).

Em seu experimento mental, Maxwell idealizou um recipiente fechado com gás, dividido em duas partes por uma parede interna, na qual existe uma pequena porta.

Abrindo e fechando a porta, uma criatura hipotética, que passou à história com o nome de "Demônio de Maxwell", poderia ordenar as partículas do gás, passando a lentas e frias para um lado e dirigindo as rápidas e quentes para o outro lado da parede, criando assim, uma diferença de temperatura que violaria as leis da termodinâmica.

No plano teórico, este experimento mental tem sido objeto de análises, interpretações e controvérsias nesses últimos 150 anos, mas testar experimentalmente a ideia vinha sendo impossível até há pouco tempo.

Então, em 2007, uma equipe escocesa finalmente construiu uma nanomáquina equivalente ao Demônio de Maxwell. Mas a controvérsia continuou, porque este experimento ainda dependia de um atuador externo, deixando a entropia total seguir seu caminho previsto e a segunda lei da termodinâmica intacta.

Agora, Jonne Koski da Universidade de Aalto, na Finlândia, através da pesquisa que faz parte de sua tese de doutorado, conseguiu construir um demônio de Maxwell autônomo, capaz de executar o experimento idealizado por Maxwell por conta própria e sem qualquer ajuda externa, permitindo analisar alterações microscópicas envolvendo a termodinâmica.

O sistema é constituído por dois transistores que separam os elétrons em termos de suas energias, efetivamente retirando energia de um dos transistores, que então se resfria, num processo adiabático.

"O sistema que construímos é um transístor de elétron único formado por uma pequena ilha metálica ligada a dois fios por junções túnel feitas de materiais supercondutores. O demônio ligado ao sistema também é um transístor de elétron único que monitora o movimento dos elétrons no sistema. Quando um elétron tunela para a ilha, o demônio o aprisiona com uma carga positiva. Inversamente, quando um elétron deixa a ilha, o demônio o repele com uma carga negativa e o força a se mover morro acima, contrariamente ao seu potencial, o que reduz a temperatura do sistema," explicou o professor Jukka Pekola.

O que torna este demônio autônomo é que ele executa a operação de medição e atuação sem qualquer comando ou energia vindos do exterior. As alterações de temperatura são indicativas da correlação entre o demônio e o sistema, ou, em termos simples, de quanto o demônio "sabe" sobre o sistema.

O sistema é operado em temperaturas extremamente baixas, e é tão bem isolado que é possível registrar mudanças extremamente pequenas de temperatura.

Um demônio eletrônico também permite um número muito grande de repetições da operação de medição e retorno em um tempo muito curto, enquanto que aqueles que, no resto do mundo, usnado moléculas para construir seus demônios teve de lidar com não mais do que algumas centenas de repetições.

O demônio de Maxwell poderá ter aplicações no resfriamento de chips e qubits e também na computação reversível, um conceito que prevê uma computação na qual o processo de cálculo pode ser revertido sem perda de energia.

"Como trabalhamos com circuitos supercondutores, também é possível para nós criar qubits de computadores quânticos. Como próximo passo, gostaríamos de examinar esses mesmos fenômenos em nível quântico," revela o professor Pekola.

Os resultados da pesquisa foram publicados na revista Physical Review Letters.

Fonte: Aalto University

quinta-feira, 14 de janeiro de 2016

Buraco negro de plasma de quarks e glúons

Por meio de simulação computacional, pesquisadores do Instituto de Física da Universidade de São Paulo, no Brasil, e do Departamento de Física da Columbia University, nos Estados Unidos, determinaram pela primeira vez, de forma quantitativa, como a carga bariônica se difunde através do plasma de quarks e glúons.

colisão de núcleos de ouro

© Brookhaven National Laboratory (colisão de núcleos de ouro)

A imagem acima mostra o evento de uma única colisão de íons de ouro, acelerados até a energia de 200 GeV (giga elétron-volts), medida pelo rastreador de vértice de silício do detector PHENIX, do Relativistic Heavy Ion Collider (RHIC).

A carga bariônica é definida pela diferença entre o número de quarks e antiquarks em um dado meio. Supõe-se que o plasma de quarks e glúons tenha predominado no Universo durante uma pequeníssima fração de segundo após o Big Bang, muito antes que o processo de expansão e consequente resfriamento do cosmo reconfigurasse várias vezes seu conteúdo material e energético, até chegar ao estágio atual. Fazendo o caminho inverso, é possível produzir o plasma de quarks e glúons a partir da matéria ordinária, aquecendo-a a temperaturas milhares de vezes superiores à mais alta temperatura registrada no Sol.

Porém, no ambiente terrestre, o patamar de energia necessário para isso só é alcançado, e por um ínfimo lapso de tempo, nas colisões relativísticas [próximas da velocidade da luz] de núcleos pesados, produzidas nos dois maiores colisores de partículas da atualidade, o Large Hadron Collider (LHC), na Europa, e o Relativistic Heavy Ion Collider (RHIC), nos Estados Unidos.

“Simulando em computador as propriedades de 250 mil buracos negros pentadimensionais, calculamos como a carga bariônica se difunde através desse plasma quando o sistema passa a conter mais matéria do que antimatéria”, disse Noronha. “Para isso, utilizamos um modelo teórico baseado na chamada ‘dualidade holográfica’, que estabelece uma surpreendente equivalência entre certas teorias quânticas definidas no espaço-tempo usual, de quatro dimensões estendidas, e a física de supercordas em um espaço-tempo curvo, de cinco dimensões estendidas.”

A “dualidade holográfica”, descoberta pelo físico argentino Juan Maldacena em 1997, é considerada uma das maiores revoluções da física teórica em anos recentes, porque possibilita que alguns fenômenos quânticos de difícil entendimento no espaço-tempo usual, de quatro dimensões, sejam estudados como hologramas de fenômenos gravitacionais mais simples ocorrendo em um espaço de cinco dimensões.

Esses fenômenos pentadimensionais são descritos pela teoria de supercordas, que é, atualmente, a principal candidata à teoria da gravitação quântica, superando o problema até agora insolúvel de compatibilizar a teoria quântica com a teoria da relatividade geral, os dois pilares da física contemporânea. Os partidários da teoria de supercordas consideram que ela poderá desempenhar um papel fundamental no entendimento de configurações em que a matéria-energia se encontra comprimida em densidades extremas, como no universo primordial ou no interior de buracos negros.

“A teoria de supercordas preconiza que as partículas fundamentais que identificamos no Universo correspondam, na verdade, a diferentes modos de vibração de minúsculas cordas existindo em um espaço-tempo de 10 dimensões. Como o Universo a que temos acesso por meio dos instrumentos de observação e dos experimentos se apresenta como um espaço-tempo com quatro dimensões estendidas [as três direções espaciais e o tempo], conjectura-se que as seis dimensões extras previstas pela teoria de supercordas devam estar compactadas em objetos extremamente reduzidos, que não podemos sondar diretamente com a tecnologia atual”, explicou o pesquisador.

Em princípio, haveria um grande número de compactações possíveis para as dimensões extras, a cada uma correspondendo um universo diferente. O Universo conhecido seria apenas um deles.

“O que Maldacena descobriu foi uma importante relação matemática entre certas teorias quânticas definidas no espaço-tempo plano usual, de quatro dimensões estendidas, e supercordas existindo em um contexto formado pela composição de um espaço-tempo curvo de cinco dimensões estendidas [chamado de ‘Anti-de-Sitter’ ou AdS] e uma hiperesfera com cinco dimensões compactadas. A relação matemática descoberta por Maldacena recebe o nome de dualidade holográfica”, informou Noronha.

Uma das principais aplicações da “dualidade holográfica” é utilizar as propriedades físicas de buracos negros definidos em um espaço AdS pentadimensional para calcular, de forma aproximada, as características do plasma de quarks e glúons, produzido experimentalmente nos dois grandes colisores.

“A expressão ‘plasma de quarks e glúons’ precisa ser melhor explicada”, ponderou o pesquisador. “A palavra ‘plasma’ designa um gás de íons, isto é, de partículas eletricamente carregadas. Ao passo que os glúons são eletricamente neutros e os quarks possuem carga elétrica fracionária (o que os distingue de todas as demais partículas, que apresentam carga elétrica inteira ou nula).

Outro aspecto bastante peculiar dos quarks e glúons é que, sob as condições habitualmente observadas na natureza, essas partículas fundamentais se encontram confinadas no interior de partículas compostas, chamadas de hádrons, como os prótons e os nêutrons, que compõem os núcleos atômicos. Quando núcleos atômicos pesados, compostos por vários prótons e nêutrons, são colididos a altíssimas energias, como ocorre no LHC e no RHIC, os quarks e os glúons são temporariamente liberados, formando o meio que, por comodidade, chamamos de plasma de quarks e glúons.”

“Esse ‘plasma’ corresponde, de fato, a gotículas de volumes minúsculos, com raios da ordem de 10-15 metros, e temperaturas altíssimas, em torno de 250 mil vezes a temperatura do centro do Sol, estimada em 107 Kelvin. De fato, essas gotículas, formadas nos grandes colisores, constituem o fluido mais perfeito, de menor tamanho e mais quente já produzido pelo ser humano. Duram apenas uma diminuta fração de segundo, antes que o resfriamento faça com que os quarks e glúons sejam novamente confinados em hádrons. Esse meio corresponderia à condição do Universo poucos instantes após o Big Bang”, descreveu Noronha.

Neste trabalho os pesquisadores utilizaram a dualidade holográfica e a simulação computacional para investigar, pela primeira vez na literatura, como a carga bariônica se difunde através do plasma de quarks e glúons. E calcularam também a condutividade associada a essa carga, além de outras grandezas observáveis, de grande importância para a caracterização física desse estado da matéria.

Um artigo descrevendo o estudo intitulado “Suppression of Baryon Diffussion and Transport in a Baryon Rich Strongly Coupled Quark-Gluon Plasma”, assinado por Rômulo Rougemont e Jorge Noronha, da USP, e por Jacquelyn Noronha-Hostler, de Columbia, foi publicado no periódico Physical Review Letters.

Fonte: FAPESP (Agência)

terça-feira, 5 de janeiro de 2016

Desordem irreversível no mundo dos átomos

Físicos brasileiros e europeus demonstraram, pela primeira vez, que um minúsculo núcleo atômico também sofre um fenômeno comum, bem conhecido dos seres humanos: os efeitos irreversíveis da passagem do tempo.

entropia da quebra de um copo

© Revista Física (entropia da quebra de um copo)

Usando equipamentos de um laboratório no Centro Brasileiro de Pesquisas Físicas (CBPF), no Rio de Janeiro, eles registraram um aumento irreversível no grau de desordem no interior de um átomo do elemento químico carbono.

Em física, o grau de desordem é medido por uma grandeza chamada entropia, que quase sempre é crescente nos fenômenos do mundo macroscópico, no máximo ela se mantém estável, mas nunca diminui em um sistema dito isolado. Uma das consequências de a entropia sempre aumentar é que, quanto maior a desordem, mais difícil se torna reverter um fenômeno perfeitamente. “Não é possível desfazer a mistura entre o café e o leite depois de misturá-los, por exemplo”, diz o físico Roberto Serra, pesquisador da Universidade Federal do ABC (UFABC) e integrante da equipe que fez os experimentos no CBPF.

Isso acontece porque o café e o leite, e tudo o mais no mundo macroscópico, são feitos de quantidades absurdamente elevadas de átomos se movimentando das maneiras as mais variadas possíveis, a maioria delas aleatórias e incontroláveis. Ante número tão elevado de combinações possíveis, até existe a probabilidade de os átomos de café se separarem dos de leite, mas ela é próxima a zero. É também por isso que não se veem os pedaços de uma taça de vinho que se parte voltarem a se unir espontaneamente.

No dia a dia, os seres humanos associam a irreversibilidade desses fenômenos à passagem do tempo e às noções de passado e futuro. Em condições normais, café e leite só existem separados antes de se misturarem e um prato perfeitamente íntegro só existe antes de se quebrar. A noção de irreversibilidade levou o astrônomo e matemático inglês Arthur Eddington a afirmar em 1928, no livro A natureza do mundo físico, que a única seta do tempo conhecida pela física era o aumento da entropia no Universo, determinado pela segunda lei da termodinâmica, a única lei irreversível da física. O conceito de seta do tempo expressa a ideia de que a passagem do tempo ocorre num sentido preferencial: do passado para o futuro.

“Embora a percepção de que o tempo não para e caminha sempre para o futuro seja óbvia em nossa experiência cotidiana, isso não é trivial do ponto de vista da física”, diz Serra. Essa dificuldade ocorre porque as leis que regem a natureza no nível microscópico são simétricas no tempo, ou seja, reversíveis. Isso significa que não haveria diferença entre ir do passado para o futuro e vice-versa.

Muitos físicos pensavam que o aumento da entropia pudesse ser um fenômeno exclusivo do mundo macroscópico porque no século XIX o físico austríaco  Ludwig Boltzmann explicou a segunda lei da termodinâmica pelos movimentos de um número elevado de átomos. Há 60 anos, porém, muitos pesquisadores trabalham para ampliar a teoria de Boltzmann para sistemas feitos de poucos ou mesmo um só átomo. E teorias atuais já estabelecem que uma única partícula deve obedecer à segunda lei da termodinâmica.

A equipe de Serra foi a primeira a medir variações de entropia em um sistema tão pequeno que só podia ser descrito pelas leis da mecânica quântica, que regem o mundo submicroscópico. O físico Tiago Batalhão, aluno de doutorado de Serra na UFABC e atualmente em um estágio de pesquisa na Áustria, realiza desde 2014 experimentos em parceria com Alexandre Souza, Roberto Sarthour e Ivan Oliveira, do CBPF, além de Mauro Paternostro, da Queen’s University, na Irlanda, e Eric Lutz, da Universidade de Erlangen-Nuremberg, na Alemanha.

Os experimentos usam campos eletromagnéticos para manipular os núcleos de átomos de carbono de uma solução de clorofórmio. Os núcleos possuem uma propriedade chamada spin, que funciona como a agulha de uma bússola e aponta para cima ou para baixo, cada sentido com uma energia diferente. Os testes começavam com os spins dos trilhões de núcleos apontando em alguma direção, a maioria para cima e uma fração para baixo, dependendo da temperatura. Em seguida, disparava-se um pulso de ondas de rádio no tubo com clorofórmio. Com duração de um microssegundo, o pulso era curto demais para que cada núcleo interagisse com os vizinhos ou o ambiente. Assim, o pulso afetava cada núcleo isoladamente. “É como se cada um deles estivesse isolado do resto do Universo”, explica Serra.

Formado por ondas cuja amplitude aumentava no tempo, o primeiro pulso perturbava os spins de cada núcleo, que flutuavam rapidamente e mudavam de direção. Após algum tempo, os pesquisadores disparavam um segundo pulso, idêntico ao primeiro em quase tudo, exceto pelo fato de a amplitude de suas ondas decrescer com o tempo. Com o segundo pulso, que representava uma versão do primeiro pulso invertida no tempo, esperava-se fazer o spin de cada núcleo retornar ao estado inicial. De fato, os spins retornaram a um estado bem próximo ao do início. Mas, medidas precisas mostraram que os estados final e inicial não eram iguais. Havia uma discrepância decorrente das transições entre os diferentes estados de energia dos spins, associadas à entropia produzida no processo de aumentar e diminuir a amplitude das ondas.

Vlatko Vedral, físico da Universidade de Oxford, Reino Unido, que faz experimentos semelhantes usando laser, considera o trabalho uma bela demonstração do que a termodinâmica quântica prevê. Ele diz que gostaria de saber se a entropia medida na escala subatômica é produzida por fenômenos descritos pelas leis da física ou se uma parte decorre de algum fenômeno desconhecido atuando sobre  a seta do tempo.

Um artigo foi publicado no periódico Physical Review Letters.

Fonte: FAPESP (Pesquisa)

sexta-feira, 1 de janeiro de 2016

Achado novo bóson mais pesado que o Higgs?

Os dois experimentos que descobriram o Bóson de Higgs em 2012 sentiram uma intrigante possibilidade de uma nova partícula elementar.

pares de fótons produzidos pelo novo bóson

© CERN/CMS (pares de fótons produzidos pelo novo bóson)

Os pares de fótons (verde) produzidos em colisões no Large Hadron Collider (LHC) sugerem a existência de um Higgs com uma massa de 750 GeV (giga elétron-volts).

Ambas as colaborações anunciaram suas observações em 15 de Dezembro, quando publicaram os primeiros resultados significantes.

Os detectores CMS e ATLAs do LHC nos arredores de Geneva, Suíça, observaram em restos de colisões de próton-próton um excesso inesperado de pares de fótons carregando em torno de 750 GeV de energia combinados. Isso poderia ser o sinal da história de uma nova partícula, também um bóson, mas não necessariamente similar ao de Higgs, decaindo em dois fótons de energia equivalente. Seria em torno de quatro vezes mais massivo do que a próxima partícula mais pesada descoberta até então, o quark top, e seis vezes mais massiva que o Higgs.

Em cada caso, a significância estatística era bem pequena. Marumi Kado, do Linear Accelerator Laboratory na Universidade de Paris-Sud, disse que o seu experimento, ATLAS, viu em torno de 40 pares de fótons acima do número esperado do modelo padrão de partículas da física; Jim Olsen da Universidade de Princeton, Nova Jersey, reportou que o CMS viu apenas dez. Nenhum deles teria sequer mencionado o excesso caso os outros experimentos não tivessem visto pistas quase que idênticas.

“É um pouco intrigante. Mas pode ocorrer por coincidência,” diz o representante do ATLAS Dave Charlton, da Universidade de Birmingham, Reino Unido.

Em física de partículas, tropeços estatísticos como esse vem e vão todo o tempo. Se isso acabar sendo uma partícula real, seria “uma mudança completa no jogo”, diz Gian Francesco Fiudice, um teórico do CERN, que não é membro nem do ATLAS nem do CMS. Físicos experimentais passaram décadas validando o modelo padrão, e o Higgs era a última peça faltante no quebra-cabeça. Uma partícula mais pesada abriria um capítulo inteiramente novo no campo. Tiziano Camporesi, um físico no CERN que representa o CMS, diz que não sabe o que concluir com os dados até então. A diferença apareceu conforme a equipe do CMS procurava por uma partícula não relacionada chamada de gráviton.

Maxim Perelstein, um físico teórico do campo de partículas na Universidade de Cornell em Ithaca, Nova Iorque, diz que apesar de que um bóson de 750 GeV não é o que os físicos do LHC tem procurado, teóricos não necessariamente o consideraria como exótico. Por exemplo, poderia ser uma partícula similar a Higgs, apenas mais pesada. “Eu não iria achar isso uma grande surpresa caso venha a ser verdade,” diz Perelstein.

Enquanto isto, buscas por partículas previstas pela supersimetria, extensão favorita dos físicos para o modelo padrão, continuam sem encontrar nada. Para o físico teórico Michael Peskin, do Acelerador Nacional SLAC em Menlo Park, California, a parte mais relevante da discussão trata da falha em encontrar a partícula supersimétrica gluino no alcance de massas possíveis até 1.600 GeV. Isto força a supersimetria perto de um ponto onde muitos físicos talvez desistam dela, diz Peskin.

Em relação aos dois fótons, Camporesi diz que em 2016 o LHC deve estabelecer conclusivamente se os dados foram apenas outro tropeço estatístico ou uma nova partícula. Vai ser a maior prioridade para a próxima rodada de coleta de dados, marcada para começar em março, diz ele. “Se existe um fenômeno natural por trás das flutuações, nós saberemos,” conclui Camporesi.

Charlton concorda: “Nós esperamos dez vezes mais dados no próximo ano, o que deve ajudar a resolver essa questão, mas provavelmente irá criar outras novas!”

Fonte: Nature

quinta-feira, 31 de dezembro de 2015

Luz ultravioleta produz raios X

Foi descoberta uma maneira de usar a luz ultravioleta para produzir raios X.

laser infravermelho e ultravioleta

© H. Kapteyn/M. Murnane/JILA (laser infravermelho e ultravioleta)

A imagem acima mostra lasers infravermelhos gerando pulsos longos (em cima) e lasers ultravioletas (embaixo) gerando pulsos de raios X muito curtos.

Esta técnica proporciona a melhoria no desempenho dos equipamentos de imageamento médico, além de permitir avanços nos estudos fundamentais de materiais.

Atualmente, os pulsos de laser mais curtos que se consegue gerar são produzidos por um processo denominado geração de harmônicos (HHG: high harmonic generation), que usa um pulso gerador longo para arrancar elétrons de átomos gasosos; quando estes elétrons retornam, é produzida luz com comprimentos de onda mais curtos, ou seja, um pulso menor. A chamada correspondência de fase, quando estes pulsos são alinhados com os raios X emitidos, é útil para várias aplicações, como o imageamento por difração.

No entanto, a correspondência de fase funciona melhor com comprimentos de onda mais longos, gerados por lasers na faixa do infravermelho médio, por exemplo, e apenas com níveis específicos de átomos ionizados.

Dimitar Popmintchev e seus colegas superaram essas limitações usando um sistema de geração de harmônicos que usa lasers ultravioleta em comprimentos de onda capazes de estimular feixes luminosos na região mais baixa do espectro de raios X.

O processo de alta geração harmônica em gases foi descoberto usando lasers ultravioleta quase 28 anos atrás. Mas, porque os cientistas daquela época não entendiam plenamente como fazer este processo eficiente, a atenção voltou-se para usar lasers de longo comprimento de onda para HHG. Na verdade, há muitos anos, a maioria dos cientistas acreditava que a produção de harmônicos de raios X moles com lasers ultravioleta seria impossível.

Em um efeito surpreendente, a refração dos raios ultravioleta, tanto nos átomos neutros como nos íons, permitiu obter um acoplamento de fase eficaz, o que por sua vez permite trabalhar em cenários mais complexos, incluindo plasmas com diferentes níveis de ionização, e não mais os níveis bem definidos exigidos pelas técnicas anteriores.

Esta nova técnica pode produzir harmônicos com fótons de até 280 eV (elétron-volts de energia); as técnicas anteriores, usando lasers infravermelhos, só chegavam a essa energia sob pressões muito baixas.

O grupo de cientistas está usando a luz ultravioeta gerado por laser harmônicos para investigar nanomateriais através de imageamento por difração. Em breve, os pesquisadores esperam produzir luz de comprimento de onda mais curto, que lhes permitirão uma resolução espacial mais elevada para analisar materiais biológicos como o DNA, RNA, proteínas e vírus.

Fonte: Science

quarta-feira, 30 de dezembro de 2015

A longevidade dos elétrons

O tempo de vida mínimo dos elétrons, de acordo com as medições recentes é de 6,6 × 1028anos (66.000 yotta-anos), o que corresponde a cerca de cinco quintilhões de vezes a atual idade do Universo.

detector Borexino

© INFN (detector Borexino)

Um elétron é a partícula subatômica mais leve, com massa de cerca de 9,11 x 10-31 kg, que transporta uma carga elétrica negativa. Não há componentes conhecidos nele, e é por isso que os elétrons são considerados uma partícula elementar.

Uma equipe de pesquisadores de diversas nacionalidades que trabalham no experimento Borexino, um detector de neutrinos que opera no Laboratori Nazionali del Gran Sasso, na Itália, buscava sinais de elétrons decaindo em partículas mais leves, mas, como esperado, não foi encontrado nada. Isso é bom, porque confirma o que físicos vem suspeitando há muito tempo. Se eles encontrassem evidências de que elétrons decaem em fótons e neutrinos, estas últimas são partículas elementares com ainda menos massa, isto violaria a conservação da carga elétrica. Tal descoberta sugeria uma nova física muito além do modelo padrão.

O decaimento departículas é muito natural na física; partículas pesadas tendem a decair em mais leves. Um nêutron sozinho, por exemplo, vai decair em um próton, um elétron e um anti-neutrino em alguns minutos. Porém, a carga elétrica total não altera. As únicas partículas que são mais leves do que elétrons são eletricamente neutras: fótons (desprovido de massa), neutrinos, glúons e grávitons. Se existisse outra partícula leve carregada, já teria sido detectada. Isto sugere que não há possibilidade do elétron decair.

Os detalhes do trabalho foram publicados no jornal científico Physical Review Letters.

Fonte: Physics World

quarta-feira, 14 de outubro de 2015

Partícula feita apenas de força nuclear forte

Há décadas, os cientistas procuram pelas chamadas “glueballs”. Parece que, enfim, acharam.

nucleons e glueball

© TU WIEN (nucleons e glueball)

A imagem acima mostra, à esquerda, nucleons que consistem de quarks (partículas de matéria) e glúons (partículas de força), e à direita, uma glueball que é constituída apenas de glúons.

Uma glueball é uma partícla exótica feita inteiramente de glúons, as partículas “pegajosas” que mantém juntas as partículas nucleares. As glueballs são instáveis e só podem ser detectadas indiretamente, por meio da análise de seu decaimento. No entanto, esse processo de decaimento ainda não é totalmente compreendido.

O Professor Anton Rebhan e Frederic Brünner da Universidade Técnica de Viena (TU Wien), na Áustria, empregaram uma nova abordagem teórica para calcular o decaimento de uma glueball. Seus resultados coincidem extremamente bem com dados obtidos em experiências em aceleradores de partículas. Há fortes indícios de que uma ressonância, chamada “f0(1710)”, encontrada em várias experiências, seja de fato a tão procurada glueball. Em poucos meses devem sair novos resultados experimentais.

Prótons e nêutrons consistem de partículas ainda mais elementares, chamadas quarks. Esses quarks são ligados pela Força Nuclear Forte. Na física de partículas, toda força é mediada por um tipo especial de partícula e a partícula da força nuclear forte é o glúon.

Os glúons podem ser encarados como versões mais complexas do fóton. Os fótons sem massa são os responsáveis pelas interações eletromagnéticas, enquanto que oito tipos diferentes de glúons desempenham uma função similar para a força nuclear forte. No entanto, existe uma importante diferença: os glúons interagem com eles mesmos, enquanto os fótons, não.  Por isso não existem fótons no estado ligado, mas uma partícula composta somente de glúons é, de fato, possível.

Em 1972, pouco depois que a teoria de quarks e glúons foi formulada, os físicos Murray Gell-Mann e Harald Fritsch especularam sobre possíveis partículas compostas somente de glúons (originalmente chamadas de “gluonium”; atualmente chamadas de “glueball”). Várias partículas, encontradas em experiências em aceleradores de partículas, foram consideradas como candidatas viáveis para glueballs, porém nunca houve um consenso científico sobre se esses sinais seriam ou não uma dessas misteriosas partículas feitas inteiramente de partículas de força. Os sinais detectados poderiam ser, ao invés de uma glueball, uma combinação de quarks e antiquarks. As glueballs são efêmeras demais para serem diretamente detectadas. Se elas existirem, teriam que ser identificadas pelo estudo de seu decaimento.

“Infelizmente, o padrão de decaimento das glueballs não pode ser calculado com rigor”, lamenta Anton Rebhan. Cálculos com modelos simplificados mostraram que há dois candidatos realísticos para glueballs: os mésons chamados f0(1500) e f0(1710). Por muito tempo, o primeiro foi considerado o candidato mais promissor. O segundo tem uma massa maior, o que concorda mais com as simulações computadorizadas, porém, quando decai, produz muitos quarks pesados, denominados quarks strange. Para muitos cientistas de partículas, isto parecia implausível, porque as interações dos glúons não fazem, usualmente, distinção entre quarks mais leves e mais pesados.

Anton Rebhan e seu estudante de PhD, Frederic Brünner, deram um grande passo à frente na solução desse enigma, usando uma abordagem diferente. Existem conexões fundamentais entre as teorias quânticas que descrevem o comportamento das partículas em nosso mundo tridimensional e certos tipos de teorias gravitacionais em espaços com mais dimensões. Isso significa que certas questões de física quântica podem ser respondidas, se usarmos ferramentas da física da gravidade.

“Nossos cálculos mostram que é efetivamente possível que as glueballs decaiam preferencialmente em quarks strange”, afirma Anton Rebhan. Surpreendentemente, o padrão de decaimento calculado, em duas partículas mais leves, é extremamente concordante com o padrão de decimento medido para o f0(1710). Além disto, outros decimentos em mais de duas partículas são possíveis. Esses padrões de decaimento também foram calculados.

Até agora, esses decaimentos alternativos para as glueballs não foram medidos, porém, dentro dos próximos meses, novos dados serão obtidos em duas experências do LHCb e TOTEM no Large Hadron Collider (LHC) do CERN e um acelerador em Beijing (BESIII). “Esses resultados serão cruciais para nossa teoria”, diz Anton Rebhan. “Para esses processos multi-partículas, nossa teoria prevê taxas de decaimento muito diferentes dos outros modelos mais simples. Se as medições concordarem com nossos cálculos, isto será um notável sucesso para nossa abordagem”. Seria um indício definitivo de que o méson f0(1710) é mesmo uma glueball. E, mais do que isso, será demonstrado que uma gravidade em número superior de dimensões pode ser utilizada para responder questões da física de partículas, de uma forma que significaria mais um enorme sucesso para a Teoria da Relatividade Geral de Einstein que completa 100 anos no próximo mês.

Um artigo foi publicado na revista Physical Review Letters.

Fonte: Technische Universität Wien

terça-feira, 6 de outubro de 2015

A metamorfose do neutrino

O Prêmio Nobel de Física de 2015 foi concedido a Arthur B. McDonald, 72, da Queen's University, do Canadá, e Takaaki Kajida, 56, da Universidade de Tóquio, no Japão pela descoberta de que os neutrinos, um tipo de partícula elementar, mudam de classe e possuem massa.

evento da detecção de neutrinos

© U. de Tóquio/Super-Kamiokande (evento da detecção de neutrinos)

Os dois pesquisadores dividem os 8 milhões de coroas suecas (US$ 963 mil) do prêmio. Ambos trabalharam em experimentos importantes para detectar e estudar essas partículas, muito difícieis de capturar por não possuírem carga elétrica e terem massa extremamente leve.

O estudo de neutrinos que se deslocam no espaço e atravessam a Terra como fantasmas era um quebra-cabeça para a física antes dos trabalhos de McDonald e Kajida. Físicos acreditavam que essas partículas, prduzidas no Sol e por raios cósmicos que incidem sobre a atmosfera terrestre, estavam sumindo durante a trajetória, pois boa parte delas não estava sendo detectada.

Neutrinos são as partículas elementares conhecidas mais numerosas do Universo depois dos fótons, as partículas de luz, e chegam à Terra vindas de todos os lados. Nossos corpos são atravessados por trilhões deles a cada segundo.

Cientistas haviam calculado quantas das partículas solares deveriam chegar à Terra, mas os primeiros experimentos de detecção só acharam um terço dos neutrinos esperados, e os físicos não sabiam por quê. Neutrinos produzidos na atmosfera também pareciam estar desaparecendo. Isso desafiava princípios básicos da física, porque partículas elementares não somem sem deixar pista.

Elaborando experimentos sofisticados com detectores ultrassensíveis em cavernas profundas para evitar interferências externas, Kajida e McDonald levaram à detecção das partículas desaparecidas. Os neutrinos estavam, na verdade, mudando de um tipo para outro, o que dificultava a investigação. O problema é que os neutrinos produzidos no Sol, por exemplo, são de uma classe específica, associada aos elétrons, as partículas de carga negativa nos átomos.

Os experimentos dos dois físicos ganhadores do Nobel de 2015 mostraram que os neutrinos do elétron também poderiam se transformar em "neutrinos do tau" ou "neutrinos do múon", associados a outras partículas elementares. Uma implicação disso era que essas partículas possuem massa, algo que não era esperado.

O experimento no qual Kajida trabalhou foi o Super-Kamiokande, um conjunto de dectores de 40 metros de altura construído numa mina de zinco a 1 km de profundidade. Esse projeto, perto de Tóquio, estudava neutrinos produzidos por raios cósmicos na atmosfera terrestre.

Takaaki Kajita & Arthur B. McDonald

© K. MacFarlane (Takaaki Kajita & Arthur B. McDonald)

McDonald trabalhou no Observatório de Neutrinos de Sudbury, que estudava neutrinos produzidos pelo Sol. O projeto consistia em detectores instalados dentro de uma caverna aberta por uma mina de níquel no estado canadense de Ontario, a 2 km de profundidade.

A confirmação de que neutrinos têm massa contrariava aquilo que era sugerido pelo Modelo Padrão, a teoria vigente da física de partículas, sugerindo que ele não é uma descrição completa da física fundamental. Antes disso, acreditava-se que os neutrinos fossem entidades sem massa, como os fótons.

Esta descoberta trata de uma física que está além do Modelo Padrão.

Agora, os experimentos continuam em intensa atividade em todo o mundo, a fim de capturar neutrinos e examinar suas propriedades. Novas descobertas sobre os seus segredos mais profundos são esperados para mudar nossa compreensão atual da história, estrutura e destino futuro do Universo.

Fonte: The Royal Swedish Academy of Sciences

sábado, 12 de setembro de 2015

Einstein foi o primeiro a deduzir E = mc²?

Nenhuma equação é mais famosa que E = mc2, e poucas são mais simples.

equação da energia

© Shutterstock (equação da energia)

De fato, a fama da equação imortal se deve principalmente à sua absoluta simplicidade: a energia E de um sistema é igual à sua massa m multiplicada por c2, a velocidade da luz ao quadrado. A mensagem da equação é que a massa de um sistema é uma medida de seu conteúdo de energia. No entanto, E = mc2 traduz alguma coisa mais fundamental. Se pensarmos em c, a velocidade da luz, como um ano-luz por ano, o fator de conversão c2 torna-se igual a 1. O que faz com que a equação se reduza a E = m. Energia e massa são iguais.
De acordo com o folclore científico, Albert Einstein formulou sua equação em 1905 e de uma estocada só, explicou como a energia é liberada em estrelas e em explosões nucleares. Essa é uma simplificação exagerada. Einstein não foi a primeira pessoa a considerar a equivalência entre massa e energia, na verdade, nem foi ele quem a provou.
Qualquer pessoa que passou por um curso básico de eletricidade e magnetismo sabe que corpos carregados conduzem campos elétricos, e que cargas em movimento também criam campos magnéticos. Portanto, partículas eletrizadas em movimento carregam campos eletromagnéticos.
No fim do século 19, filósofos da natureza acreditavam que o eletromagnetismo era mais fundamental que as leis do movimento de Isaac Newton, e que o próprio campo eletromagnético forneceria a origem da massa. Em 1881 J. J. Thomson, que mais tarde viria a descobrir o elétron, tentou demonstrar pela primeira vez, que isso seria possível calculando explicitamente o campo magnético gerado por uma carga esférica em movimento e mostrando que o campo induzia uma massa no interior da própria esfera.
O efeito é totalmente análogo ao que ocorre quando deixamos cair uma bola de tênis no solo. A força da gravidade puxa a bola para baixo. Forças de flutuação e de arraste do ar impedem a queda da bola. Mas isso não é tudo. Com ou sem resistência, para a bola cair ela precisa empurrar para fora de seu caminho o ar que está à sua frente e esse ar tem massa.
A massa efetiva da bola em queda é, consequentemente, maior que sua massa em repouso. Para Thomson o campo da esfera agiria como o ar na frente da bola, e nesse caso a massa efetiva da esfera seria toda a massa induzida pelo campo magnético.
O resultado ligeiramente complicado de Thomson dependia da carga, do raio e da permeabilidade magnética do corpo, mas em 1889, o físico inglês Oliver Heaviside simplificou os cálculos de Thomson e mostrou que a massa efetiva deveria ser m = (43) E/c2, onde E é a energia do campo elétrico da esfera. Os físicos alemães Wilhelm Wien, famoso por suas pesquisas sobre a radiação do corpo negro, e Max Abraham, obtiveram o mesmo resultado: que se tornou conhecido como “massa eletromagnética” do elétron clássico (o que nada mais era que uma minúscula esfera carregada). Apesar de que, para haver massa eletromagnética era preciso que o corpo estivesse carregado, e em movimento, o que claramente não se aplicava a todos os corpos, essa foi a primeira tentativa séria de relacionar massa e energia.
Tampouco foi a última. Quando, em 1884, o inglês John Henry Poynting enunciou o famoso teorema sobre conservação da energia do campo eletromagnético, outros cientistas tentaram rapidamente estender as leis da conservação para massa e energia.
De fato, em 1900, o sempre presente Henri Poincaré declarou que se supusermos que o momentum de quaisquer partículas presentes num campo eletromagnético mais o momentum do próprio campo são ambos conservados, então o teorema de Poynting previa que o campo deve agir como um “fluido fictício” com massa tal que a energia é E = mc2. Poincaré, no entanto, não conseguiu relacionar E com a massa de qualquer corpo real.
O escopo das investigações foi ampliado novamente em 1904 quando Fritz Hasenöhrl criou um experimento mental envolvendo energia térmica numa cavidade em movimento. Relegado ao esquecimento nos dias atuais, exceto pelos detratores de Einstein, Hasenöhrl era na época mais famoso que o analista desconhecido do registro de patentes.
Hasenöhrl escreveu uma excelente trilogia de artigos, “Sobre a teoria da radiação de corpos em movimento”. Os dois últimos foram publicados no periódic oAnnalen der Physik, em 1904, e no início de 1905. No primeiro ele imaginou uma cavidade cilíndrica perfeitamente refletora na qual as duas calotas das extremidades, que serviam de aquecedores, eram ligadas, enchendo a cavidade com calor comum, ou seja, com radiação de corpo negro. A terceira lei de Newton (“toda a ação gera uma reação igual e oposta”) afirma em linguagem moderna que qualquer fóton emitido por um aquecedor deve exercer uma força externa contra cada um deles (podemos supor que essas forças externas sejam o que mantém as calotas presas ao cilindro). Mas como fótons idênticos são emitidos de cada extremidade, as forças têm a mesma intensidade. Pelo menos, quando vistas por observador localizado no interior da cavidade.
Hasenöhrl, então perguntou, a seguir, como o sistema seria visto ao se deslocar com velocidade constante em relação a um observador situado no laboratório.
A física básica afirma que a luz emitida por uma fonte que se aproxima de um observador se desloca para o lado azul do espectro visível, e se a fonte se afasta do observador a luz se desloca para a extremidade vermelha do espectro. É o famoso desvio Doppler. Fótons emitidos por uma das calotas das extremidades sofrerão então desvio Doppler para o azul para o observador localizado no referencial do laboratório e os da outra extremidade serão desviados para o vermelho. Fótons azuis transportam mais momentum que vermelhos, por isso, para manter a cavidade se deslocando a uma velocidade constante as duas forças externas agora precisam ser diferentes. Uma aplicação simples do “teorema do trabalho-energia”, que relaciona a diferença de trabalho produzida pelas forças com a energia cinética da cavidade, permitiu que Hasenöhrl concluísse que a radiação do corpo negro tem massa m = (83) E / c2. Em seu segundo artigo, Hasenöhrl considerou uma cavidade cheia de radiação em movimento lentamente acelerado e obteve a mesma resposta. Depois de uma comunicação de Abraham, no entanto, ele descobriu um erro algébrico e em seu terceiro artigo ele corrigiu o resultado para m = (43) E / c2.
Ao considerar uma massa inerente ao calor, Hasenöhrl estendeu suas especulações anteriores além do campo eletromagnético de corpos eletrizados, até chegar a um experimento mental mais amplo, muito semelhante ao do próprio Einstein do ano seguinte que deu origem a E = mc2. Obviamente, Hasenöhrl estava escrevendo a pré-relatividade, e alguém poderia imaginar que um resultado incorreto seria inevitável. Porém, a questão não era assim tão simples. O astrônomo Stephem Boughn analisou detalhadamente a trilogia de Hasenöhrl e a alegação comum, “ele se esqueceu de levar em conta as forças que a própria cavidade exerce para manter as calotas das extremidades no lugar”, não é o problema. O maior erro no primeiro experimento mental de Hasenöhrl foi ele não ter percebido que se as calotas das extremidades emitiam calor, elas precisavam perder massa, um lapso irônico, visto que essa é exatamente a equivalência entre massa e energia que ele tentava obter. Apesar disso, Hasenöhrl estava bastante correto, a ponto de Max Planck chegar a dizer em 1909, “que a radiação do corpo negro possui inércia, foi mostrado pela primeira vez por F. Hasenöhrl”. A radiação do corpo negro tem massa.
O mais surpreendente é que no segundo experimento, no qual a cavidade já está cheia de radiação e as calotas não estão irradiando, a resposta de Hasenöhrl não está obviamente errada, mesmo de acordo com a relatividade. O famoso artigo de Einstein, E = mc2, de 1905, “A inércia de um corpo depende da energia nele contida?” considera somente uma partícula pontual emitindo uma explosão de radiação e como um observador em movimento vê o sistema? Ao considerar uma cavidade de comprimento finito, Hasenöhrl estava sendo muito mais audacioso, ou negligente. Corpos extensos têm produzido vários problemas para a relatividade especial, como o fato de a massa do elétron clássico também sair da equação m = (43) E / c2.

Logo, usando matemática relativisticamente correta obtém-se um resultado que aparentemente contradiz a reposta que qualquer um espera e quer. Argumentos sobre como resolver adequadamente a questão persistem até hoje.
Igualmente surpreendente foi o fato de que embora Einstein tenha sido o primeiro a propor a equação correta, E = mc2, ele, na verdade, não a provou, pelo menos, de acordo com sua própria relatividade especial. Einstein começou utilizando relações relativísticas (efeito Doppler relativístico) que tinha deduzido alguns meses antes, mas finalmente chegou bem perto dos bits relativísticos, deixando uma resposta que se pode tirar da física puramente clássica e que pode ou não permanecer verdadeira em velocidades mais altas onde a relatividade começa a ter efeito. Além disso, embora ele tenha afirmado que sua conclusão se aplica a todos os corpos e a todas as formas de energia, Einstein certamente não fez nenhuma tentativa para prová-la. Ele sabia dos pontos fracos de suas deduções e escreveu mais alguns artigos ao longo dos 40 anos seguintes tentando consertar as coisas, mas provavelmente jamais conseguiu. Obviamente, desde então inúmeros experimentos nos convenceram de como os resultados de Einstein estavam corretos.
É natural especular se Einstein sabia do trabalho de Hasenöhrl. É difícil acreditar que não, pois a maior parte da trilogia imbatível de Hasenöhrl apareceu nas mais renomadas revistas científicas na época. Certamente, em algum momento ele conheceu Hasenöhrl: uma fotografia famosa da primeira Conferência Solvay de 1911 mostra os dois juntos em torno da mesa com outros ilustres participantes.
Assim, embora Einstein tenha atingido um definitivo avanço conceitual ao relacionar a massa de um corpo com a energia total nele contida, quer esteja ou não em movimento, quer tenha ou não um campo eletromagnético associado, é preciso atribuir também os devidos créditos a Hasenöhrl, por ter descoberto, sem ambiguidade, que o próprio calor possui uma massa equivalente, e aos físicos que o precederam por terem fornecido a estrutura que lhe serviu de apoio. A equação E = mc2 é o final surpreendente de uma longa e intrincada história científica.

Fonte: Scientific American